QTEROS

Biomass 2010

Kevin A. Gray, PhD Sr VP and Chief Technical Officer

> March 30-31, 2010 Washington, D.C.

Outline

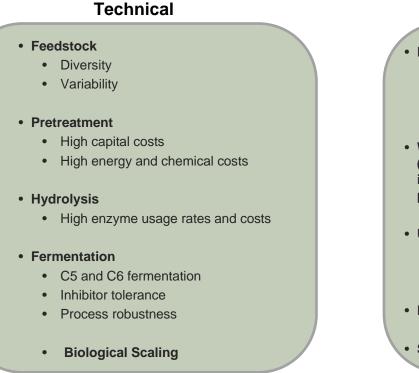
- The U.S. needs to rapidly develop, scale and commercialize advanced biofuels; cellulosic ethanol represents the greatest near-term solution as prescribed by the RFS
- Commercial scale deployment continues to be a challenge due to high capital and operating costs of those processes being developed
- Consolidated bio-processing represents the major step-function change required for the industry to accelerate the broad and profitable commercialscale deployment of cellulosic ethanol
- Qteros is developing the industry-leading solution for consolidated bioprocessing

Qteros Executive Overview

Headquarters	Marlborough, MA
Company History	While founded in 2006, business acceleration initiated post \$25M Series B financing in 2H 2008; exclusive WW licensee on foundational patent portfolio from University of Massachusetts (Professor Susan Leschine)
Employees	50
Technology	Consolidated bio-processing (CBP) platform focused on cellulosic ethanol production using unique <i>Clostridium phytofermentans</i> microorganism (aka Q Microbe™); other high-value specialty chemical products under development via same organism
Business model	Technology solution provider to the cellulosic ethanol industry. Exploit Q Microbe [™] as industry-standard consolidated bio-processing (CBP) solution for <i>lowest cost production</i> . Create "value sharing" structures with strategic partners
President & CEO	John McCarthy . Former EVP at Verenium Corporation and Chief Business Officer at Microbia. BS Lehigh University; MBA, Harvard Business School
SVP & CTO	<i>Kevin Gray, PhD</i> . Former Director of Biofuels R&D at Verenium Corporation. BS Duke University; PhD, Chemistry, Texas Tech University
SVP & CFO	<i>Kevin McLaughlin.</i> 30 years experience in the biopharma and biotechnology industries. BS, Northeastern University; MBA, Babson College.
VP Business Development	<i>Mick Sawka</i> . Former head of BD, Microbia; Cabot Corp; 3M. BS Chemical Engineering, Stanford; MS Chemical Engineering, MIT; MBA, Univ. of St Thomas (MN)
Major Investors	Venrock, Battery Ventures, BP, Valero, Soros, Long River, Camros Capital

Qteros' Mission

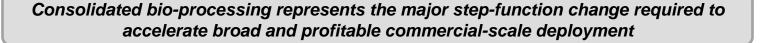
Development and integration of the industry-standard consolidated bio-processing (CBP) platform for **<u>lowest-cost</u>** cellulosic ethanol production . . .



... which serves to catalyze and accelerate the worldwide commercialization of advanced biofuels.

The Supply Side Of The Equation Represents The Major Constraint For Commercial-Scale Deployment Of Cellulosic Ethanol

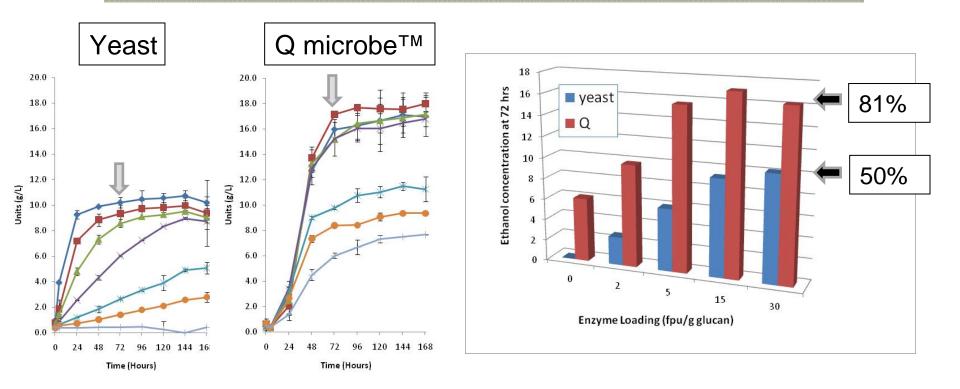
- There are currently no commercial-scale cellulosic ethanol plants
- The first meaningful commercial-scale plants are not expected to be on-line until late 2011 or 2012
- Numerous hurdles remain to be overcome . . .



Financial

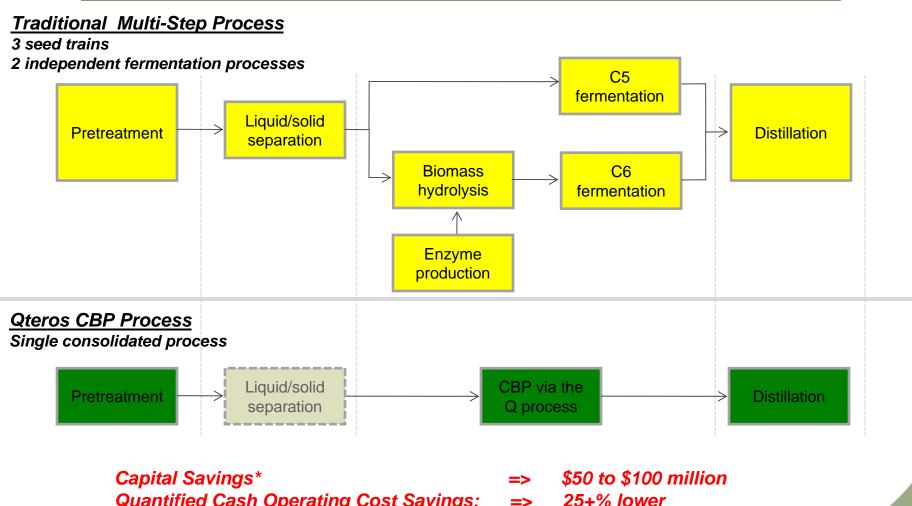
- Lack of capital / limited credit
 - Private & public
 - "1st plant" technology aversion
 - Consistent Federal policies?
- Without industry performance benchmarks (due to variations in plant size and performance) it will be difficult for investors to evaluate new proposals
- Unpredictable feedstock costs
 - Lack of LT feedstock supply agreements
 - Undeveloped infrastructure/logistics
- Requirement for LT off-take contracts
- Significant gasoline price variability

To Reduce The <u>Technical</u> Risks And Optimize The Viability Of Large-Scale Supply, Qteros Is Investing In The Commercial Deployment Of The Q Microbe[™] Process


	Biomass	Pretreatment	Enzyme Production	Fermentation	Ethanol
Q Microbe [™] Attribute	 Digests a variety of feedstocks (corn stover, fiber, sugarcane bagasse, switchgrass) Metabolism adjusts to feedstock 	 Ferments oligomeric sugars 	 Naturally produces all of the enzymes required to digest biomass Over 100 different genes for plant cell wall degradation 	 Co-ferments C5 and C6 sugars Anaerobic fermentation 	• Ethanol is the primary natural product of the Q Microbe's metabolism, at commercially- relevant yields
Value to Customer	 Utilizes low cost non- food /feed raw materials Maximum raw material and geographic flexibility for site selection 	 Less acid Lower pressure Less energy Fewer inhibitors Less complex engineering and design criteria 	 80% reduction in enzymes used Elimination of separate unit operations (saccharification, hydrolysis) 	 Fewer unit operations Less water Less energy Fewer FTEs Less maintenance Higher efficiency 	• Lower CAPEX and OPEX due to higher rates, titers, yields, fewer side products

Q Microbe™ Technical Value Proposition

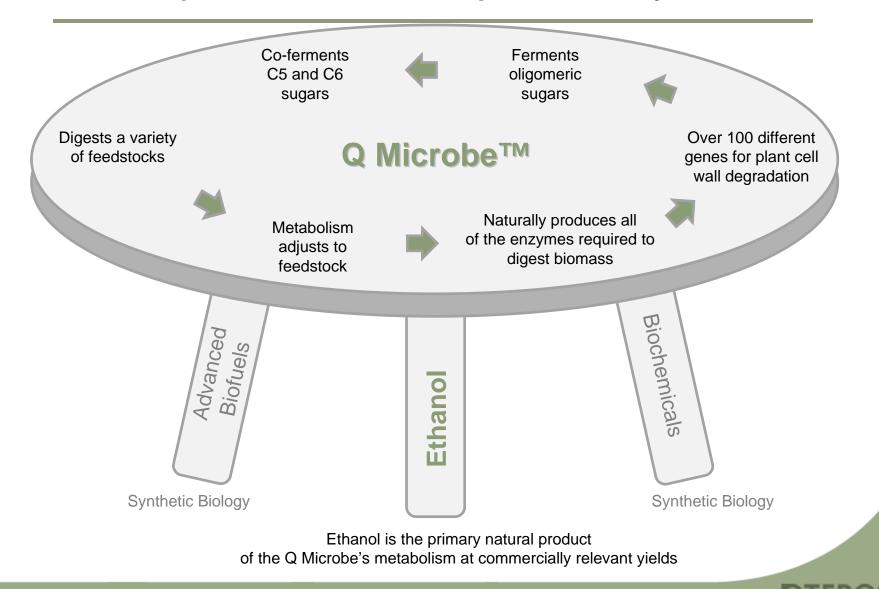
Requires 80% Less Enzyme and Improves Yield



- Q microbe[™] converts both C6 and C5 sugars resulting in overall higher conversion as compared to yeast
- Q microbe[™] produces all the requisite enzymes required for fermentation therefore requires far less externally added enzyme as compared to yeast

Commercial CBP Implications

Efficiency, Industrial-Scale Optimization => Low-Cost Production



- **Quantified Cash Operating Cost Savings:** Unquantified Cash Operating Cost Savings => Incremental Annual Co-Product Revenue =>
 - 25+% lower
 - TBD, but significant

OTER

\$7 to \$10 million

Q Microbe[™] Consolidated Bio-Processing Technology Platform Future development will allow us to produce many other molecules

9