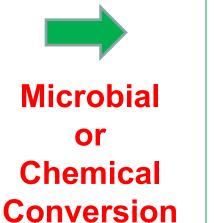
Sugar to Diesel via Microbial Fermentation


Kirk Apt March 30, 2010

Biomass to Fuel

Plant Material

Corn (starch) Stover Wood chips Sugarcane (sucrose) Bagasse Vegetable oils

Fuels

Alcohols- Gasoline (Ethanol, Butanol) Hydrocarbons Lipids – Biodiesel

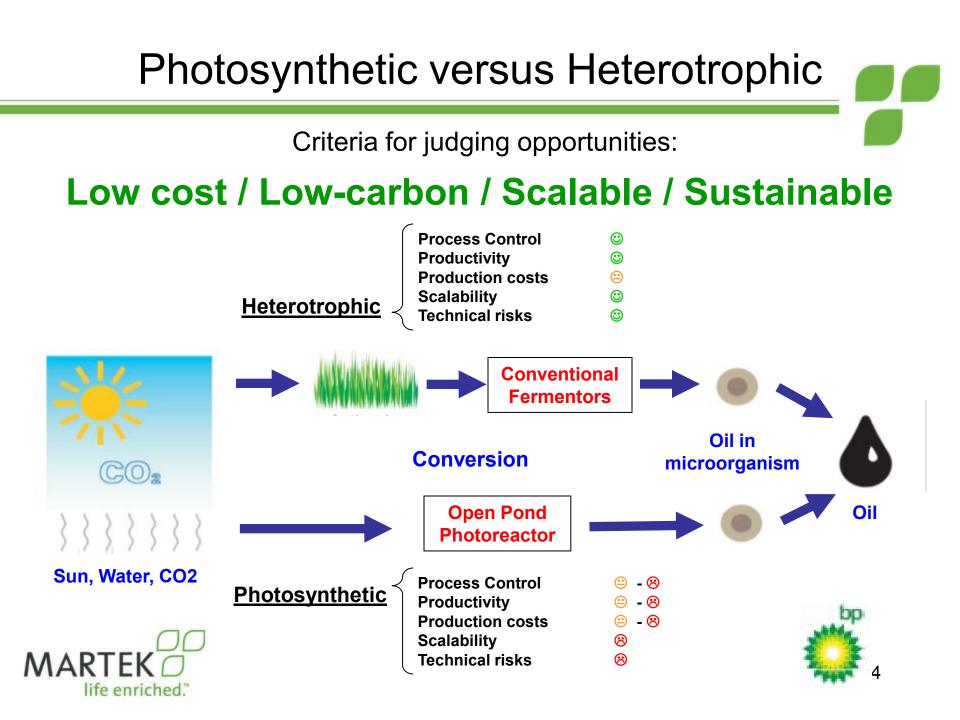
BP-Martek Sugar to Diesel Technology

- **Technology:**
 - Non photosynthetic conversion of sugars into oils for application in transportation fuels (biodiesel, aviation fuels). Alternative to vegetable oils and photosynthetic algae.
- Steps:
 - Access cost effective and sustainable sugar juice extracted from sugar cane or Ligno-cellulosic material

- » Use proprietary heterotrophic micro- organism to convert the sugars into lipids / oils.
- » Lipids produced have profiles and/or properties similar to conventional vegetable oils (rape seed, soya bean oil), or tailored to specific applications.
- » "Upgrade" the lipids/oils to FAME or hydrocarbons through existing chemical or thermo-catalytic conversions

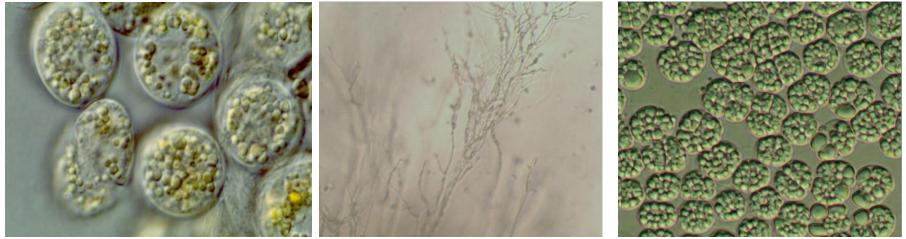
suitable for use as transportation fuel

Oil is extracted and upgraded so it is



Sugars are extracted from the crop and the biomass

A single celled organism is used to convert the sugars to oils

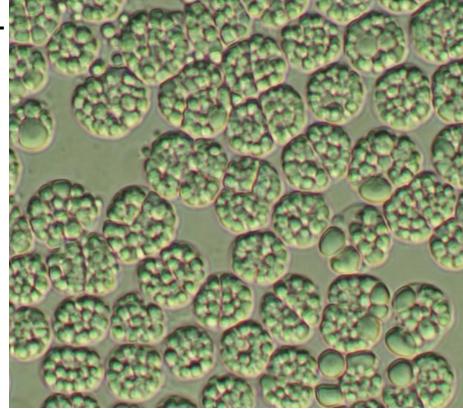

the sun and CO₂ from the air and

store it as sugars and biomass.

Martek Microbial Technology

- Expertise in algae and fungi with over 20 years commercialization experience. Including multiple successful oil products.
- Extensive expertise in the isolation, and characterization of algal and microbial species. Continue to conduct regular new collections
- Culture collection containing over 5000 microbial isolates, both photosynthetic and heterotrophic. Representatives from most algal groups. Many already characterized for lipid productivity.

Crypthecodinium


ife enriched

Mortierella

Schizochytrium

Schizochytrium

- •Marine Thraustochytrid (eukaryote microalga)
- Used for commercial production
- •DHA enriched oil and biomass
- Heterotrophic; no plastids
- >100 g/L biomass
- 50-70% of cell weight is TAG
 40% 22:6 ω3 (DHA)
- >30 g/L DHA

Major Process Changes on DHA Production

Major Scale-up Process Changes	Cell Conc. (g/L)	DHA Titer (g/L)	Lipid Conc. (% dry wt)	DHA in Oil (% FAME)	DHA Prod (g/L/hr)
Initial Lab Scale	21	2	39	26	0.05
Scale-up to 10,000 L	40	4	35-40	25-28	0.07
Low Chloride	65-70	8	35-40	32	0.10
Fed Batch + Low DO	170-210	40-50	50-73	35-45	0.45-0.55

Barclay 2005

