

Bioenergy & Climate: the long, medium, and short of it Nathanael Greene March 30, 2010

Natural Resources Defense Council

Lifting our eyes to the horizon

- Long-term environmental imperatives are the global environmental imperatives:
 - Sustainable food production
 - Climate change
 - Water
 - Sustainable energy production
 - Biodiversity
- There's a big difference between:
 - solutions that "fit" bioenergy into a sustainable future and
 - solutions where bioenergy is synergistic to a sustainable future

Walking in the right direction

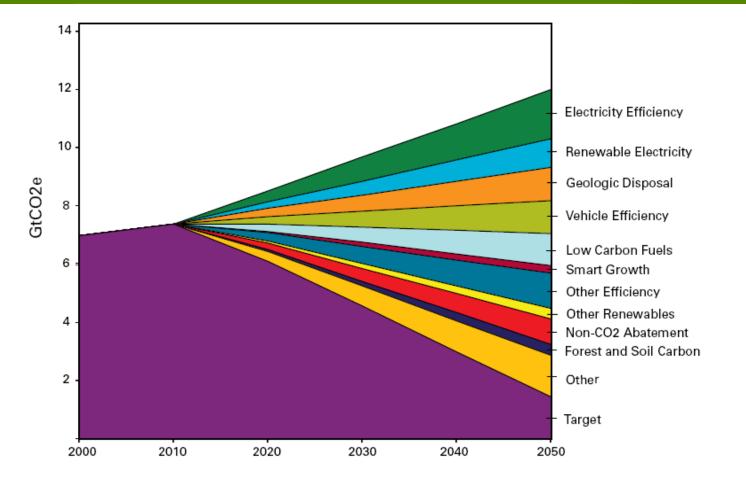
- In the medium term, bioenergy needs to develop in a way that is clearly a partial solution and isn't making other problems worse
 - Example clearly: low carbon and not driving increase in water use from ag and energy
- As industry matures, must not be predicated on consuming a unsustainable resource (e.g. terrestrial carbon)
- The challenge of scale cannot be underestimated
 - What happens when the demands of a 100 million gallon plant scale to 1 billion gallons, 10 billion, 100 billion?
 - Once a technology is economically competitive, what will stop its growth? The natural resource supply?

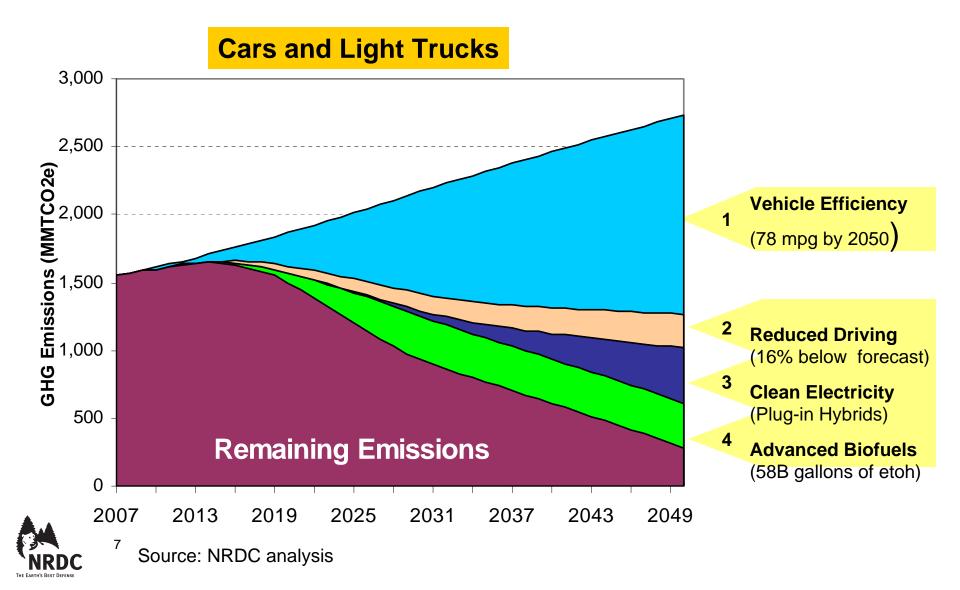
Which way the first step?

- In the short-term, we need to launch the industry on the green and narrow
- Tension between:
 - Financial and engineering challenges of "just getting the first one built"
 - Environmental and sociopolitical imperative of getting off on the right foot/proving the potential to do it right
- Big volume, long-term commitments of US and Europe have not helped with this tension
 - Short-term policy uncertainty hinders market
 - Long-term policy creates a winner-takes dynamic
 - Either business models are in or out
 - Environmental impacts must be evaluated on worstcase basis

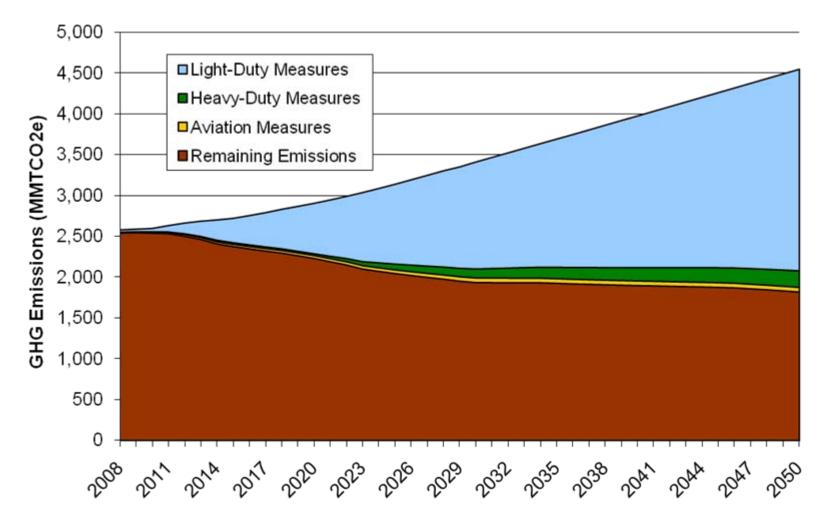


Today's corn and soy biofuels are not good enough


		Percent Reduction Lifecycle GHG Emisisons								
	Time Horizon	2022		2017			2012			
		30	30	30	30	30	30	30	30	30
	Discount Rate	0%	0%	0%	0%	0%	0%	0%	0%	0%
	Range	Low	Mean	High	Low	Mean	High	Low	Mean	High
Dry Mill NG	Base Plant (dry DDGS)	-28%	-17%	-3%	-9%	10%	33%	9%	33%	63%
Dry Mill NG	w/ CHP (dry DDGS)	-31%	-20%	-6%	-13%	7%	30%	5%	30%	59%
Dry Mill NG	w/ CHP and Fractionation (dry DDGS)	-33%	-22%	-7%	-14%	5%	28%	4%	28%	57%
Dry Mill NG	w/ CHP, Fractionation and Membrane Seperation (dry DDGS)	-37%	-25%	-11%	-18%	1%	24%	-1%	24%	53%
Dry Mill NG	w/ CHP, Fractionation, Membrane Seperation, and Raw Stard	-41%	-30%	-15%	-23%	-4%	19%	-6%	19%	48%
Dry Mill NG	Base Plant (wet DGS)	-39%	-27%	-13%	-21%	-2%	22%	-3%	21%	50%
Dry Mill NG	w/ CHP (wet DGS)	-42%	-30%	-16%	-24%					7%
Dry Mill NG	w/ CHP and Fractionation (wet DGS)	-41%	-29%	-15%	-23%		oes	-n4		8%
Dry Mill NG	w/ CHP, Fractionation and Membrane Seperation (wet DGS)	-44%	-33%	-19%	-27%		065			4%
Dry Mill NG	w/ CHP, Fractionation, Membrane Separation, and Raw Stard	-47%	-36%	-22%	-30%					1%
Dry Mill Coal	Base Plant (dry DDGS)	1%	12%	26%	22%	m	oot	: the		6%
Dry Mill Coal	w/ CHP (dry DDGS)	-1%	10%	24%	19%				-	3%
Dry Mill Coal	w/ CHP and Fractionation (dry DDGS)	-9%	3%	17%	12%					5%
Dry Mill Coal	w/ CHP, Fractionation and Membrane Seperation (dry DDGS)	-16%	-5%	9%	3%	- 21	10/	RF		6%
Dry Mill Coal	w/ CHP, Fractionation, Membrane Seperation, and Raw Stard	-25%	-14%	0%	-6%	4	///			6%
Dry Mill Coal	Base Plant (wet DGS)	-21%	-10%	4%	-2%					100
Dry Mill Coal	w/ CHP (wet DGS)	-23%	-12%	2%	-4%	r c		iron	non	8%
Dry Mill Coal	w/ CHP and Fractionation (wet DGS)	-25%	-13%	1%	-6%		yu i	iren		7%
Dry Mill Coal	w/ CHP, Fractionation and Membrane Seperation (wet DGS)	-32%	-21%	-7%	-14%	0.10	2070	4 70	2070	
Dry Mill Coal	w/ CHP, Fractionation, Membrane Seperation, and Raw Stard	-38%	-26%	-12%	-20%	-1%	23%	-2%	22%	51%
Dry Mill Biomass	Base Plant (dry DDGS)	-51%	-40%	-26%	-34%	-15%	8%	-18%	6%	36%
Dry Mill Biomass	w/ CHP (dry DDGS)	-59%	-47%	-33%	-42%	-23%	0%	-26%	-2%	27%
Dry Mill Biomass	w/ CHP and Fractionation (dry DDGS)	-57%	-45%	-31%	-40%	-21%	2%	-24%	0%	30%
Dry Mill Biomass	w/ CHP, Fractionation and Membrane Seperation (dry DDGS)	-56%	-45%	-31%	-40%	-20%	3%	-23%	1%	30%
Dry Mill Biomass	w/ CHP, Fractionation, Membrane Seperation, and Raw Stard	-57%	-45%	-31%	-40%	-21%	3%	-24%	0%	30%
Dry Mill Biomass	Base Plant (wet DGS)	-52%	-41%	-27%	-35%	-16%	7%	-19%	6%	35%
Dry Mill Biomass	w/ CHP (wet DGS)	-59%	-48%	-34%	-43%	-24%	0%	-27%	-3%	27%
Dry Mill Biomass	w/ CHP and Fractionation (wet DGS)	-57%	-46%	-32%	-41%	-21%	2%	-24%	0%	29%
Dry Mill Biomass	w/ CHP, Fractionation and Membrane Seperation (wet DGS)	-57%	-45%	-31%	-40%	-21%	2%	-24%	0%	30%
Dry Mill Biomass	w/ CHP, Fractionation, Membrane Seperation, and Raw Starc	-57%	-46%	-32%	-40%	-21%	2%	-24%	0%	29%
Wet Mill	with NG	-19%	-7%	7%	-3%	17%	40%	13%	37%	67%
Wet Mill	with coal	8%	19%	33%	24%	43%	66%	40%	64%	93%
Wet Mill	with biomass	-59%	-48%	-33%	-43%	-24%	0%	-27%	-3%	27%



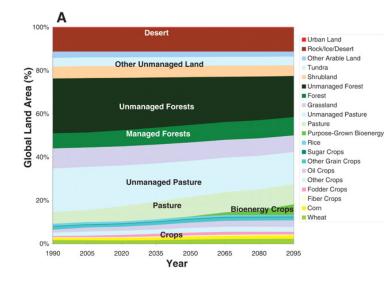
We Need Big Solutions, Fast, and Lots of 'em



- US must contribute a 60-80% reduction in GHG emissions
- Renewables can provide about 1/5 of these reductions
- Biofuels can provide about half of the renewables wedge

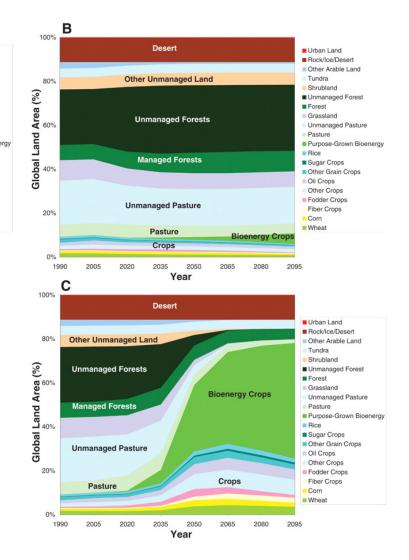
2050 80% Climate Stabilization Target: Four Key Strategies

Looking at all of transportation makes biofuels more urgent



How much low carbon bioenergy can we have?

- Really, how much low-carbon biomass can we produce?
- Have to understand combined demand for biopower, bioheat, and biofuels
- In US, over 2005 baseline, we expect increase of between 101-285 billion kWh and 30 billion gallons of bioenergy by 2020
 - 2.5-3.1 EJ of bioenergy/year in 2020
 - Equal to as much as 28 billion ft3 green wood or nearly 2x average annual harvest over past 2 decades



Wise et al., Science 2009

Global land-use scenarios:

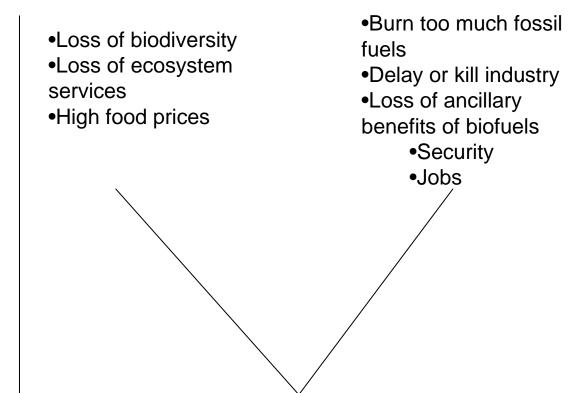
A)Reference case
B)Universal Carbon Tax for 450ppm
including terrestrial carbon
C)Fossil Fuel and Industrial Carbon Tax
for 450 ppm excluding terrestrial carbon

Cap driven "leakage" is already happening

- European demand for biomass is creating growth in wood pellet industry in US
 - No accounting for carbon
 - Is Europe assuming all biomass is carbon neutral?
- US is poised to make this mistake
 - Notion of offsets and RED prove that not all landmanagement is carbon neutral
- RED is critical to slow rate of deforestation from non-biofuels related pressures
 - Would need to increase to offset bioenergy LUC
 - Like baling more while we poke more holes in the boat or paying for both sides of the war

How do we develop low carbon bioenergy?

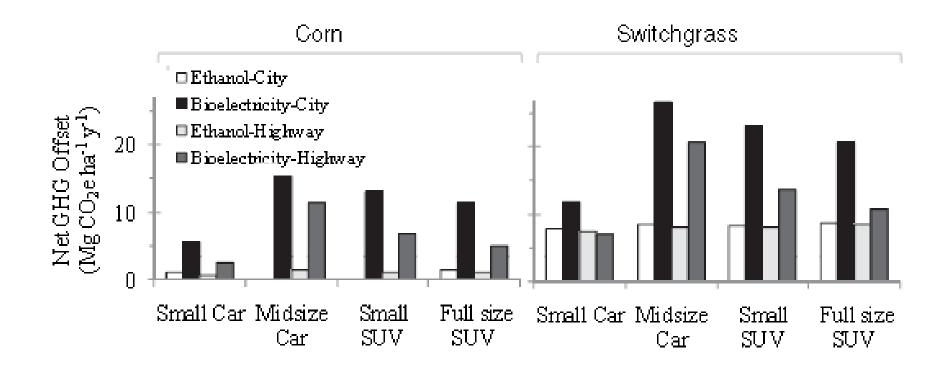
- First best solution: effectively put terrestrial carbon under international cap
 - Polluter pays!
- Second best:
 - A.Mandate feedstocks and practices so that market is limited to "safe" choices
 - Europe sort of
 - USA for RES thru renewable biomass (weak but essential)
 - B.Measure performance and let market decide
 - CA and USA thru ILUC calculation
- Absent regulation, 2020 incremental US bioenergy will lead to between 60-350 million metric tons CO2 from LUC (1-6% of 2005 baseline)


How much uncertainty is too much?

- Remember the policy context:
 - Mandates
 - CA performance standard
- Could biofuels grown on crop land actually reduce pressure on forests and grass lands?
 - In the context of mandates, could ILUC push us in the wrong direction?
 - No. ILUC might be smaller than the models show, but can't be negative.
- What is the risk of acting in the face of uncertainty?
 - Too much GHG reductions
 - Perception that we can't make current rules work

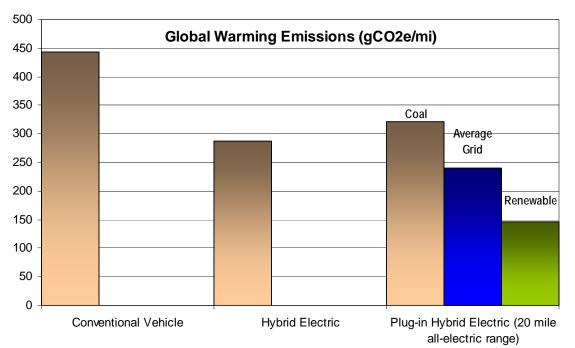
Getting it wrong has a cost

Strictness of our rules and accounting



If we're going to use, let's do it right

What is the best use of biomass?



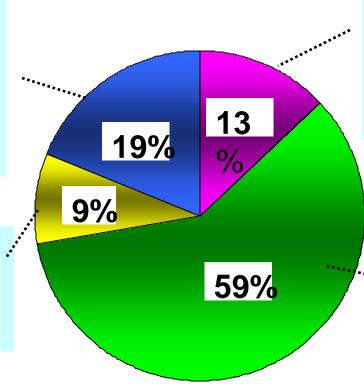
Source: Campbell et al, "Greater Transportation Energy and GHG Offsets from Bioelectricity Than Ethanol," *Science Express*, May 7, 2009. <u>http://www.sciencexpress.org/7May 2009/Page1/10.1126/science.1168885</u>

We need renewable electricity & plug-in hybrids

- Electricity is a much more efficient source of energy for transportation
- Efficiency means that even average grid power can reduce GHG emissions
- There are:
 - Technical challenges (batteries)
 - Economic challenges (renewables and cost of plug-in hybrids)
 - Behavioral challenges (plugging in vs. filling up)

2050 80% Climate Stabilization Target: Cumulative Emission Benefits by Strategy

Cumulative Emission Benefits by 2050 Cars and Light Trucks


Total Reduction of 53.6 Gigatonnes of CO2e by 2050

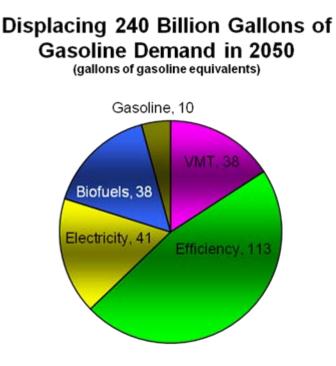
4. Advanced Biofuels

- 58B gal by 2050 of etoh by 2050
- Average GHG reduction of 75% compared to gasoline

3. Clean Electricity

 45% of all miles driven are on electricity from low carbon grid

2. Reduced Driving


- 16% lower miles driven by 2050
- Smart growth, road pricing, and transit

1. Vehicle Efficiency

 67% reduction in CO2e/mile or about 78 mpg

Another way to look at it: We Can Virtually Eliminate Our Demand for Gasoline by 2050

- To get sufficient GHG reductions from the transportation sector, biofuels will have to play a much larger role than they do today
 - 3x LDV efficiency, 16% VMT reduction, all plug-in flex-fuel hybrids driving first 46% of miles on electricity
 - Still need 60 billion gallons (etoh equiv) of biofuels with 80% reduction in GHG per gallon

