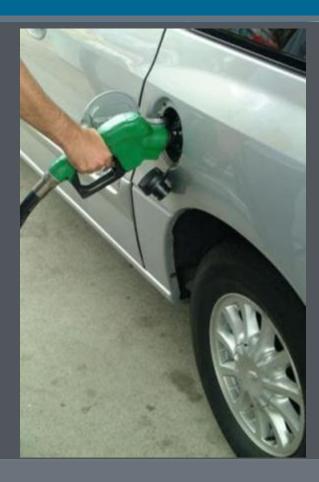
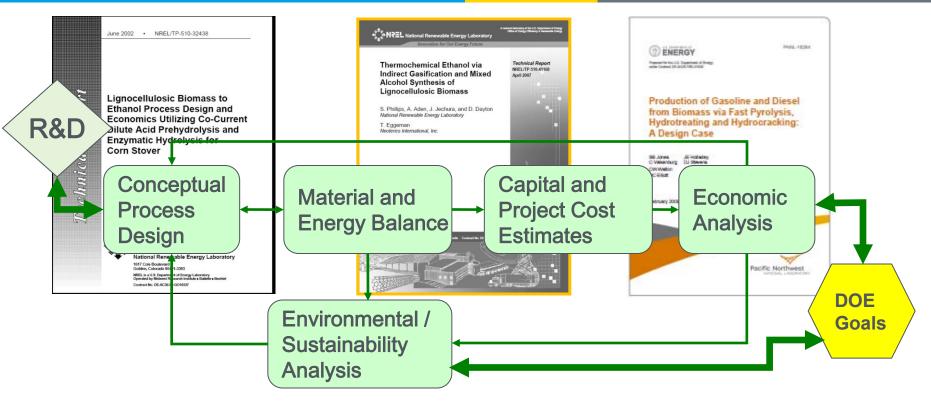
Biochemical Conversion Processes


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Advanced Bio-based Jet fuel Cost of Production Workshop

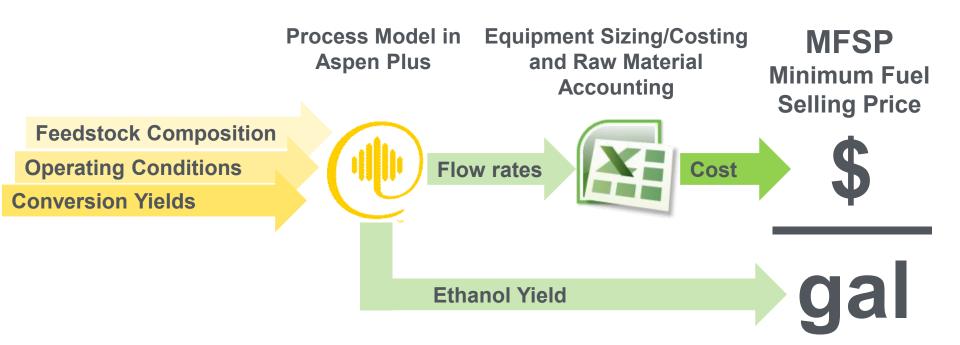
Mary Biddy (NREL) November 27, 2012



- Techno-Economic Analysis Approach
- Biochemical conversion to Ethanol
- Biochemical conversion to Advanced Hydrocarbons

Techno-Economic Analysis Approach

Energy Efficiency & Renewable Energy

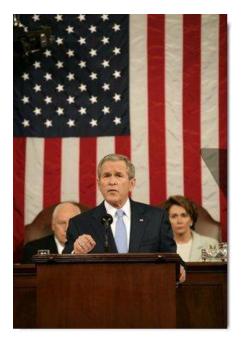


- Collaborate with engineering & construction firm to enhance credibility, quality
- Conceptual design reports are transparent, highly peer reviewed
- Iteration with researchers and experimentalists is crucial

Techno-Economic Analysis Approach

ENERGY Energy Ren

Energy Efficiency & Renewable Energy



- Modeling is rigorous and detailed with transparent assumptions
- Assumes nth-plant equipment costs
- Discounted cash-flow ROR calculation includes return on investment, equity payback, and taxes
- Determines the minimum selling price required for zero NPV

State of Technology Background

Energy Efficiency & Renewable Energy

2006 State of the Union

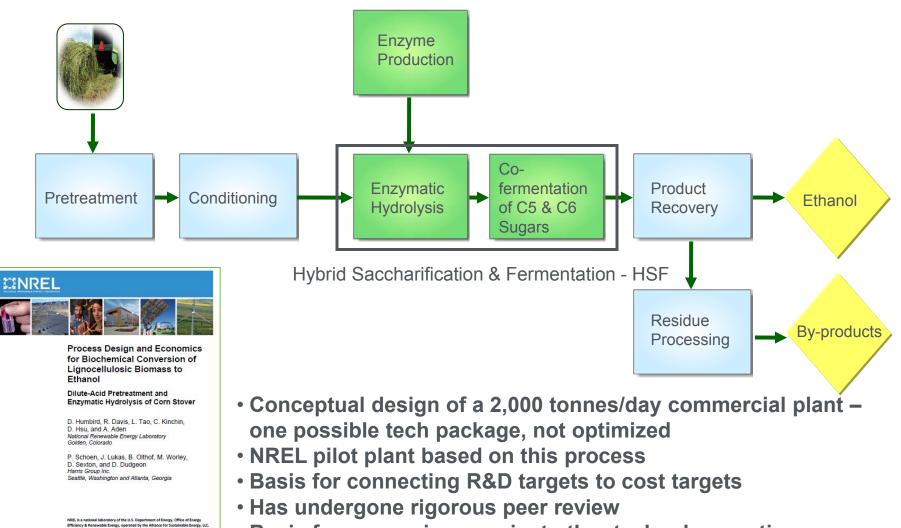
"America is addicted to oil...the best way to break this addiction is through technology."

"Our goal is to make cellulosic ethanol practical and cost competitive within 6 years."

2007 State of the Union

"Reduce U.S. gasoline usage by 20% in 10 years – 75% from new fuels and 25% from vehicle efficiency"

"Mandatory fuel standard to require 35B gallons of renewable and alternative fuels by 2022."


State of Technology Background Cost Targets Developed

ENERGY Energy Efficiency & Renewable Energy

- Original Design Reports updated to ~\$2.00/gal target (2011 timeframe)
 - Total bottoms up approach with no end cost target in mind
 - Incorporation of state of the art knowledge on capital costs, financing assumptions, process design
 - Roughly equivalent to gasoline production at \$110/BBL crude

Organization	Oil Price Forecast in 2012 (2007\$/barrel)	Ethanol Production Cost (2007\$/gallon ethanol)
EIA, AEO2009, High Oil Price Case	116	2.06
EIA, AEO2009, Reference Case	95	1.76
EIA, AEO2009, Low Oil Price Case	51	1.04

State of Technology Background 2011 Design Report for Cellulosic Ethanol

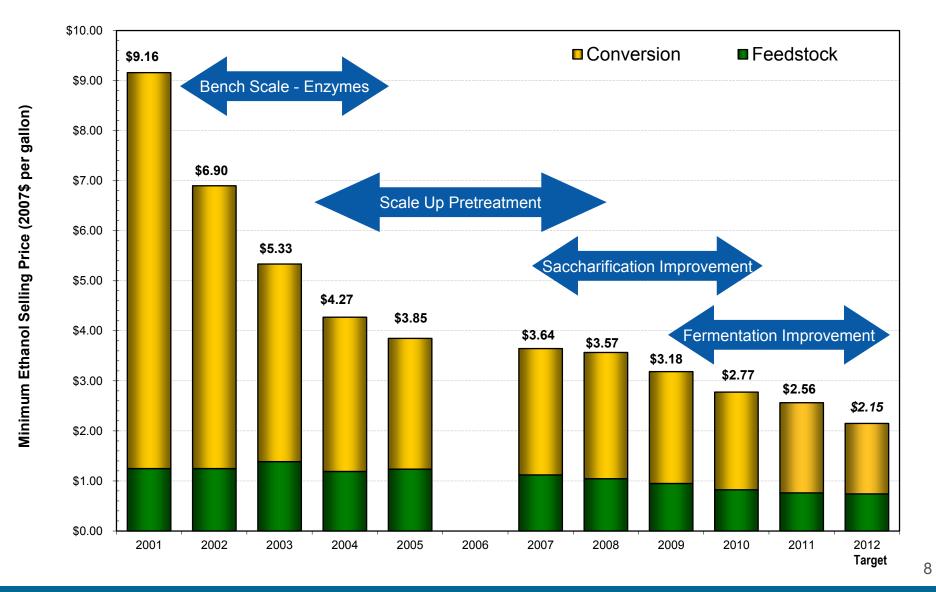
Basis for comparison against other technology options

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy


Technical Report NREL/TP-5100-47764 May 2011

Contract No. DE-AC36-08GO28308

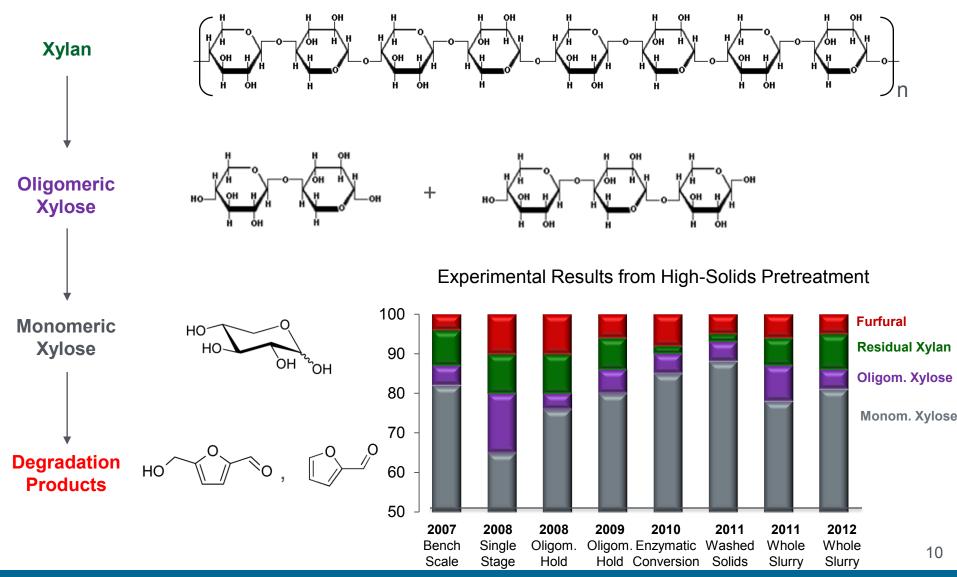
7

BC Conversion to Cellulosic Ethanol Historic State of Technology

BC Conversion to Cellulosic Ethanol Technical Target Table

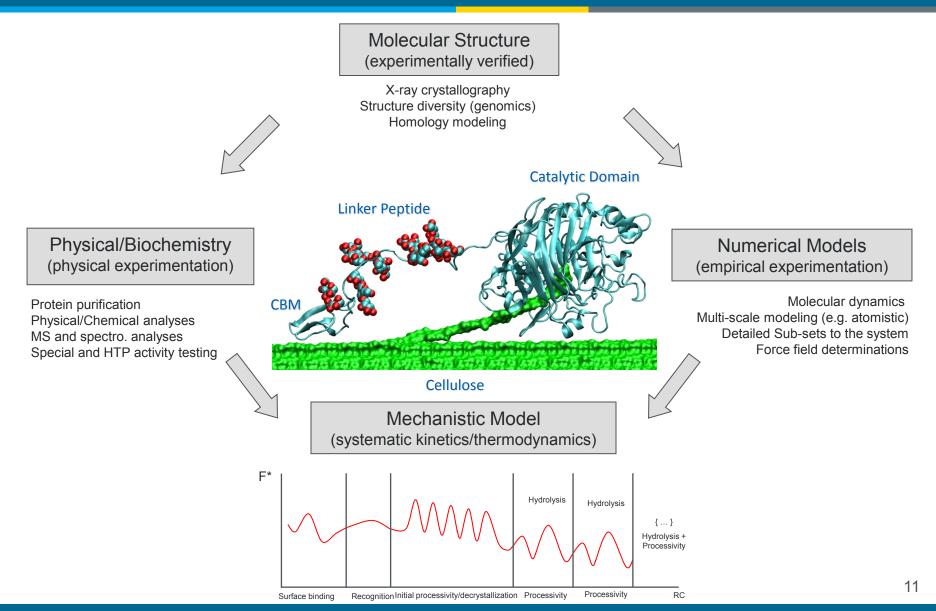
Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF


	2007	2008	2009	2010	2011 Targets	2011 Washed Solids	2011 Whole Slurry	2012 Targets
Minimum Ethanol Selling Price (\$/gal)	\$3.64	\$3.56	\$3.19	\$2.77	\$2.62	\$2.56	\$2.37	\$2.15
Feedstock Contribution (\$/gal)	\$1.12	\$1.04	\$0.95	\$0.82	\$0.76	\$0.76	\$0.82	\$0.74
Conversion Contribution (\$/gal)	\$2.52	\$2.52	\$2.24	\$1.95	\$1.86	\$1.80	\$1.55	\$1.41
Yield (Gallon/dry ton)	69	70	73	75	78	78	71	79
Feedstock								
Feedstock Cost (\$/dry ton)	\$77.20	\$72.90	\$69.65	\$61.30	\$59.60	\$59.60	\$59.60	\$58.50
Pretreatment								
Solids Loading (wt%)	30%	30%	30%	30%	30%	30%	30%	30%
Xylan to Xylose (including enzymatic)	75%	75%	84%	85%	88%	88%	78%	90%
Xylan to Degradation Products	13%	11%	6%	8%	5%	5%	6%	5%
Conditioning								
Ammonia Loading (mL per L Hydrolyzate)	50	50	38	23	25	25	25	25
Hydrolyzate solid-liquid separation	Yes	Yes	Yes	Yes	Yes	Yes	No	No
Xylose Sugar Loss	2%	2%	2%	2%	1%	1%	1%	1%
Glucose Sugar Loss	1%	1%	1%	1%	1%	1%	1%	0%
Enzymes								
Enzyme Contribution (\$/gal EtOH)	\$0.39	\$0.38	\$0.36	\$0.36	\$0.36	\$0.34	\$0.38	\$0.34
Enzymatic Hydrolysis & Fermentation								
Total Solids Loading (wt%)	20%	20%	20%	17.5%	20%	17.5%	17.5%	20%
Combined Saccharification & Fermentation Time (d)	7	7	7	5	5	5	5	5
Corn Steep Liquor Loading (wt%)	1%	1%	1%	1%	0.60%	0.25%	0.25%	0.25%
Overall Cellulose to Ethanol	86%	86%	84%	86%	86%	89%	80%	86%
Xylose to Ethanol	76%	80%	82%	79%	85%	85%	85%	85%
Arabinose to Ethanol	0%	0%	51%	68%	80%	47%	47%	85%

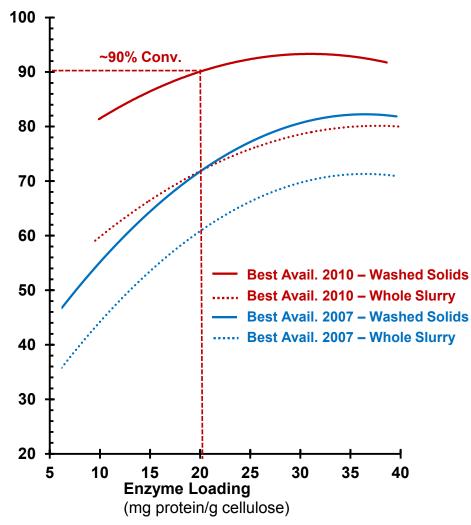
9

BC Conversion to Cellulosic Ethanol Hemicellulose to Sugars (C_5)


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

BC Conversion to Cellulosic Ethanol Enzymatic Saccharification - Fundamentals


Energy Efficiency & Renewable Energy

BC Conversion to Cellulosic Ethanol Enzymatic Saccharification

Cellulose Conversion (%)

2010:

Commercial Enzyme Package 1 (40 mg/g)

- > ~90% Cellulose to Glucose (Washed Solids)
- ➤ ~70% Cellulose to Glucose (Whole Slurry)

2011:

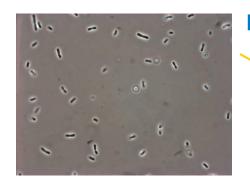
Commercial Enzyme Package 2 (40 mg/g)

- > >90% Cellulose to Glucose (Washed Solids)
- > >80% Cellulose to Glucose (Whole Slurry)

Commercial Enzyme Package 2 (20 mg/g)

~75% Cellulose to Glucose (Whole Slurry)

2012:


De-acetylation + Commercial Enzyme Package 2 (20 mg/g)

~78% Cellulose to Glucose (Whole Slurry)

BC Conversion to Cellulosic Ethanol Strain Development

Energy Efficiency & Renewable Energy

Microbial conversion of sugars to products

Introduced Xylose Utilization - 1994

Introduced Arabinose Utilization - 1995

Combined pentose utilization - 1997

Stabilization by integration - 1999

U.S. DEPARTMENT OF

ENERGY

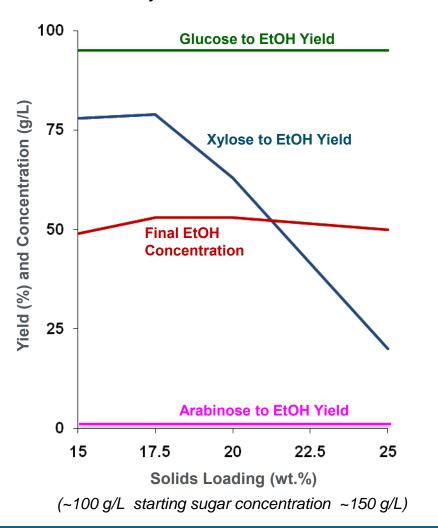
Development of Zymomonas

Further Development in CRADA with DuPont 2002-2007

DOE Grants to Further Strain Development (2007-2011)

- Cargill
- Mascoma
- Purdue / ADM
- DuPont
- Verenium




The miracles of science-

BC Conversion to Cellulosic Ethanol Fermentation - End Product Inhibition

Zymomonas mobilis 8b

2010:

Zymomonas mobilis 8b (NREL)

- ➤ ~95% Glucose to Ethanol
- ➤ ~79% Xylose to Ethanol
- No arabinose conversion demonstrated at NREL
- ➢ Ethanol titer ~50 g/L

2011:

Industrial Organism

- ➢ 95% Glucose to Ethanol
- ➢ 85% Xylose to Ethanol
- > 47% Arabinose to Ethanol
- ➢ Ethanol titer ~ 55 g/L

2012:

De-Acetylation / Industrial Organism

- > Decrease acetic acid and furfural dramatically
- ➢ 96-97% Glucose to Ethanol
- ➢ 93% Xylose to Ethanol
- ➢ 54% Arabinose to Ethanol
- Ethanol titer ~72 g/L

BC Conversion to Cellulosic Ethanol Technical Target Table

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

	2011 Targets	2011 Washed Solids	2011 Whole Slurry	2012 Targets
Minimum Ethanol Selling Price (\$/gal)	\$2.62	\$2.56	\$2.37	\$2.15
Feedstock Contribution (\$/gal)	\$0.76	\$0.76	\$0.82	\$0.74
Conversion Contribution (\$/gal)	\$1.86	\$1.80	\$1.55	\$1.41
Yield (Gallon/dry ton)	78	78	71	79
Feedstock				
Feedstock Cost (\$/dry ton)	\$59.60	\$59.60	\$59.60	\$58.50
Pretreatment				
Solids Loading (wt%)	30%	30%	30%	30%
Xylan to Xylose (including enzymatic)	88%	88%	78%	90%
Xylan to Degradation Products	5%	5%	6%	5%
Conditioning				
Ammonia Loading (mL per L Hydrolyzate)	25	25	25	25
Hydrolyzate solid-liquid separation	Yes	Yes	No	No
Xylose Sugar Loss	1%	1%	1%	1%
Glucose Sugar Loss	1%	1%	1%	0%
Enzymes				
Enzyme Contribution (\$/gal EtOH)	\$0.36	\$0.34	\$0.38	\$0.34
Enzymatic Hydrolysis & Fermentation				
Total Solids Loading (wt%)	20%	17.5%	17.5%	20%
Combined Saccharification & Fermentation Time (d)	5	5	5	5
Corn Steep Liquor Loading (wt%)	0.60%	0.25%	0.25%	0.25%
Overall Cellulose to Ethanol	86%	89%	80%	86%
Xylose to Ethanol	85%	85%	85%	85%
Arabinose to Ethanol	80%	47%	47%	85%

Keys to Hitting 2012 Targets

Pilot scale integrated testing was in place and ready

Whole slurry mode was necessary

Solid/Liquid separation and washing too costly

Incorporation of de-acetylation

- > Better fermentation (ethanol tolerance)
- Better digestibility (glucose yield) at lower enzyme loadings
- > OPEX savings outweigh CAPEX costs
 - Lower acid usage
 - Lower ammonia usage
 - Lower wastewater treatment costs

BC Conversion to Cellulosic Ethanol Summary

U.S. DEPARTMENT OF

ENERGY

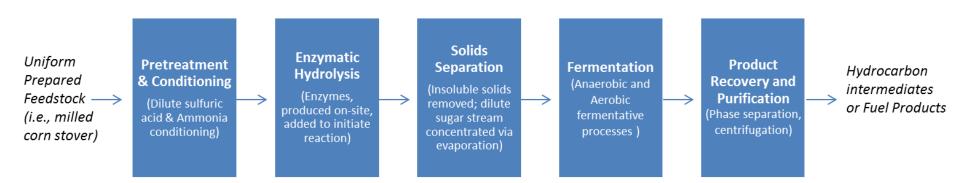
2012 Cellulosic Ethanol Successful Demonstration

- Developed pretreatment/conditioning strategy (bench and pilot scale) capable of releasing >80% of the hemicellulosic sugars in whole slurry mode
- Reduced Enzyme Costs >20x and developed strategy for further reductions
- Developed Industrially Relevant Strains Capable of Converting C₅ and C₆ Cellulosic Sugars at

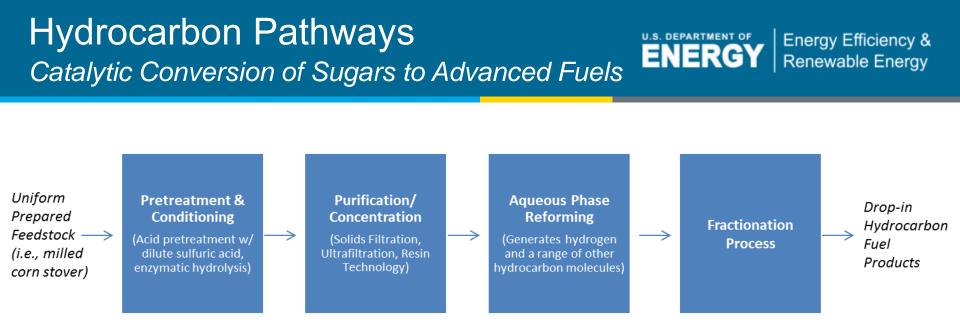
total conversion yields >95% and tolerant of ethanol titers of ~72 g/L

- Built/adapted fully integrated pilot scale capability for 2012 demonstration
- Developed peer reviewed model for extrapolation to commercial scale
- Commercial demonstrations of similar design coming online (Poet, Abengoa)

Leveragability to Hydrocarbons


- Pretreatment and enzymatic saccharification technologies can make cellulosic sugars
- Compositional analysis techniques fully applicable
- > Pilot/bench scale P/T, Saccharification and Fermentation equipment easily re-purposed
- Need some minor, relatively easy modifications for different downstream needs (e.g. separations, purification, hybrid techniques)

Hydrocarbon Pathways Fermentation of Sugars to Advanced Fuels


Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

ENERGY

- Key research needs:
 - Maximize sugar production
 - Optimize process integration
 - Understand the need for hydrolyzate conditioning and effect of inhibitors
 - Maximize overall conversion yield to final products
 - Investigate routes to cost-effectively utilize entire biomass; Understand sustainability trade-offs

- Key research needs:
 - Maximize sugar production
 - Optimize process integration
 - Understand the need for hydrolyzate conditioning and effect of inhibitors
 - Maximize overall conversion yield to final products
 - Investigate routes to cost-effectively utilize entire biomass;
 Understand sustainability trade-offs

Pathways to Jet Fuel Direct from Ethanol


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

EERE is sponsoring research on producing jet-range hydrocarbons from minimally processed alcohols produced by fermentation or catalysis.

The example on this slide used a mixed alcohol feedstock (see table) which was fed into a catalytic reactor.

Compounds	Feed Concentration (wt%)
Methanol	0 to 2.5
Ethanol	8 to 28
C3+ Alcohols	1 to 3
Acetic Acid	4 to 14
C2+ Aldehydes	6 to 17
Ethyl Acetate	1 to 18
Water	41 to 60

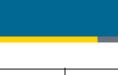
Pathways to Jet Fuel Direct from Ethanol

MIL-DTL-Specification Test 83133H Spec PNNL-1 PNNL-2 FT-SPK JP-8 Requirement Aromatics, vol % <25 1.9 2.20.0 18.8 Olefins, vol % 1.2 1.1 0.0 0.8 Heat of Combustion ≥ 42.8 43.1 43.1 44.3 43.3 (measured), MJ/Kg Distillation: IBP, °C 159 161 165 144 10% recovered, °C ≤ 205 165 171 167 182 20% recovered, °C 173 177 189 166 50% recovered, °C 183 206 208 171 90% recovered, °C 220 190 256 244 EP, °C <300 214 243 275 265 T90-T10, °C 22 25 49 89 62 Residue, % vol ≤ 1.5 1.1 1.1 1.5 13 Loss, % vol < 1.508 09 0.8 1 Flash point, °C >38 44 48 45 51 Freeze Point, °C ≤-47 <-60 <-60 -50 -51 0.775 - 0.840Density @ 15°C, kg/L 0.803 0.814 0.756 0.804 (0.751 - 0.770)

U.S. DEPARTMENT OF

- PNNL prepared samples for fuel property evaluation
- Off-site specification testing conducted by AFRL

- Possible jet fuel blend stock
 - Large volume samples required
 - for fit-for purpose testing


NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

Pacific Northwest

