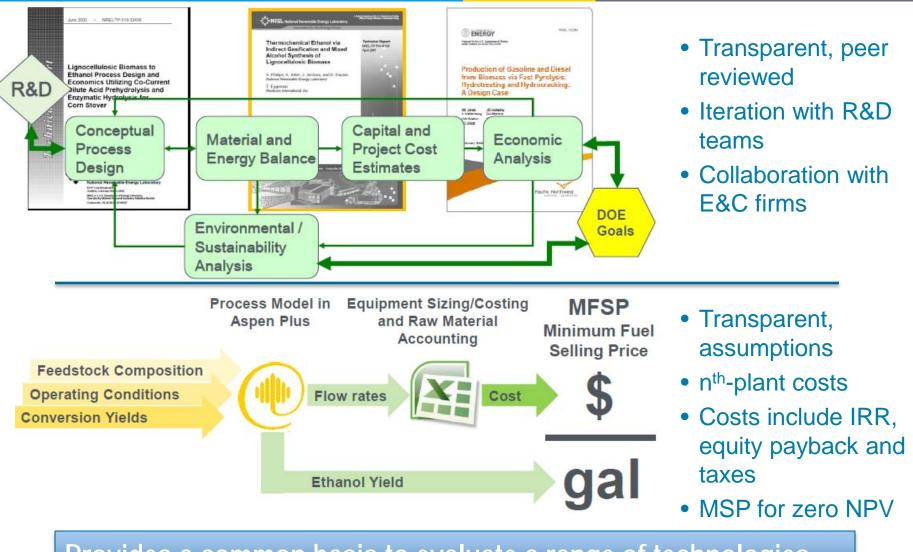
Thermochemical Conversion Processes to Aviation Fuels

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Advanced Bio-basedJet Fuel Cost of Production Workshop John Holladay (PNNL) November 27, 2012

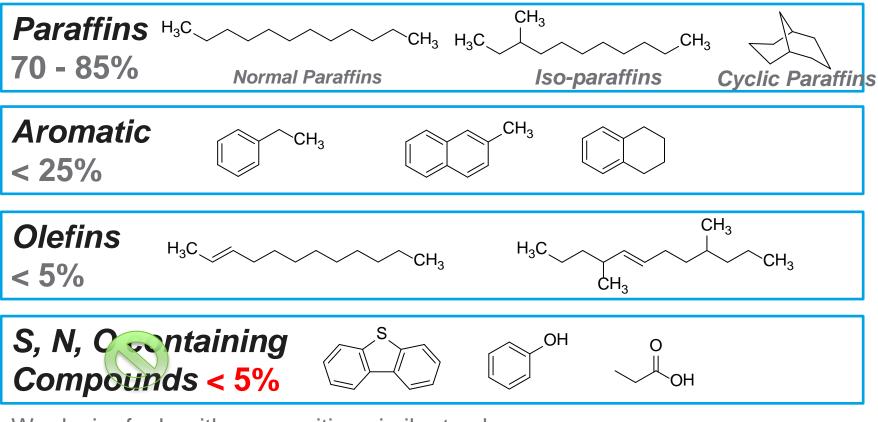

Overview

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

- Building on the Approach previously described by Mary
- Syngas routes from alcohols (sans Fischer-Tropsch)
- Pyrolysis approaches (Lignocellulosics)
 - Fast Pyrolysis
 - Catalytic Fast Pyrolysis (in situ and ex situ)
- Pyrolysis approaches (Algae)
 - Hydrothermal Liquefaction

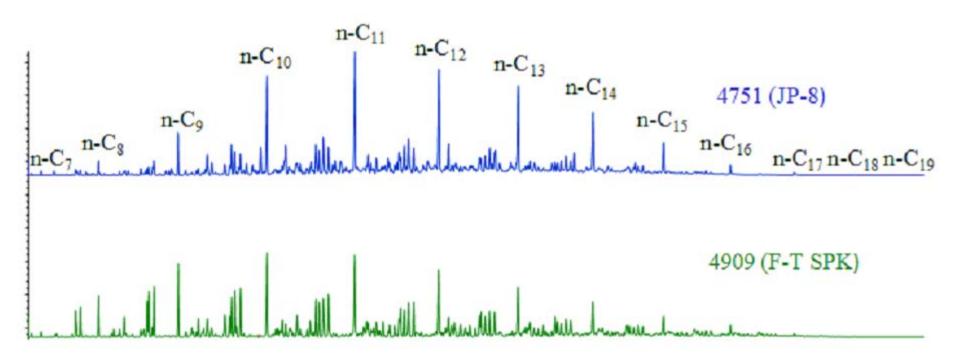
Approach


Provides a common basis to evaluate a range of technologies

The compound classes in jet fuels

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy



We desire fuels with composition similar to above (i.e. a replacement or "drop-in" fuel)

Fuel Molecules in JP-8 and Fischer Tropsch Synthetic Paraffinic Kerosene (SPK)

JP-8 and FT-SPK Carbon Length C8-C16

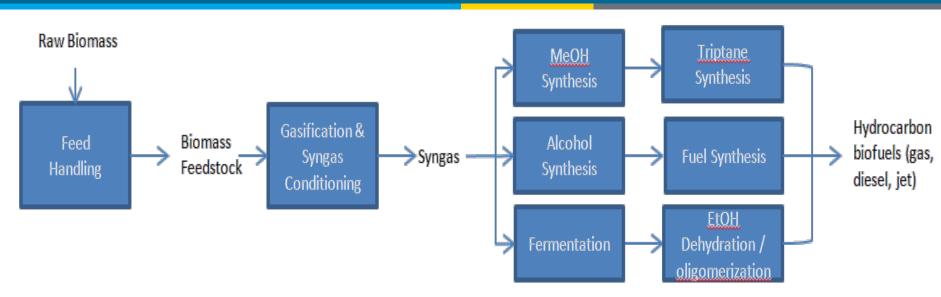
December 10, 201

Contribution of Different Hydrocarbons to Jet Fuel

Potential Contribution^{*} of Each Hydrocarbon Class to Selected Jet Fuel Properties (For hydrocarbons in the jet fuel carbon number range)

	Hydrod				arbon Class		
Jet Fuel Property		n-Paraffin	Isoparaffin		Naphthene	Aromatic	
Energy content: Gravimetric		+			0		
Volumetric		-	-		0	+	
Combustion quality		+	+		+	-	
Low-temperature fluidity			0/+		+	0/-	
* "+" indicates a beneficial effect, "0" a neutral or minor effect, and "—" a detrimental effect.							
Hydrodeoxygenation of natural oils or 2-step oxygenate to fuels Oxygenates to Fuels							
Aromatics in jet fuel also helps elastomers in the fuel system to							

swell and seal properly at low temperature

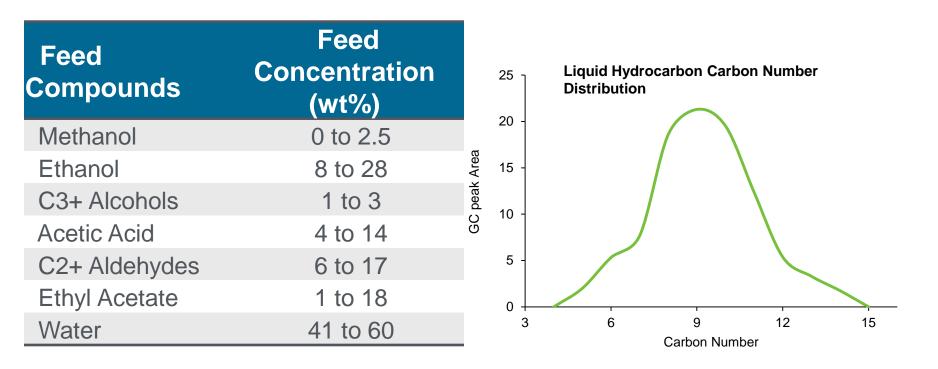

December 10, 2012

Source: Aviation Fuels Technical Review (FTR-3) prepared by Chevron

Syngas to Fuels Critical Needs and Uncertainties

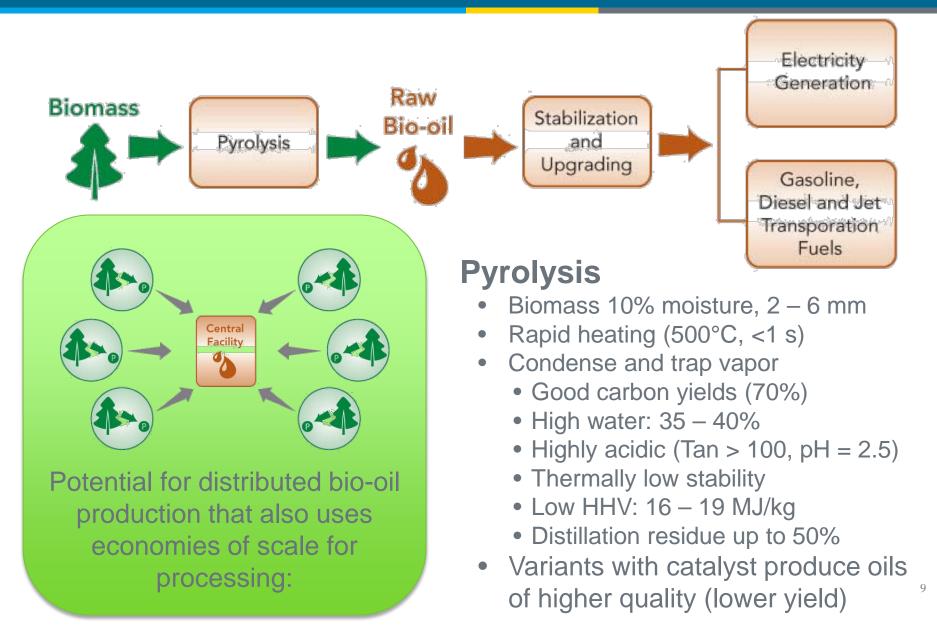
Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

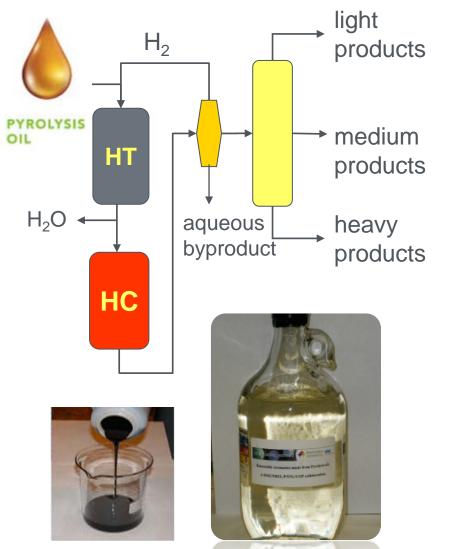

EERE is modeling three syngas based routes to hydrocarbon fuels

- Methanol to triptane-type molecules
 - fuel quality, capital cost, catalyst life, overall economics
- Mixed alcohols to jet fuels
 - Oxygenate production efficiency vs methanol, fuel quality; catalyst stability, overall economics
- Syngas fermentation to alcohols followed by dehydration/oligomerization
 - Minimum syngas cleanup
 - Cost of alcohol with minimal processing (non-fuel grade intermediate)
 - Catalyst poisons in broths

Mixed Alcohol Product (Example)


- Mixed alcohol product from PNNL Syngas to Alcohols Project
- Demonstrated feasibility of upgrading mixed oxygenate streams to hydrocarbon fuels
- In this demonstration the product contains primarily aromatic components in the gasoline range with ~50% overlap with jet

Pyrolysis Oil Stabilization and Upgrading


U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

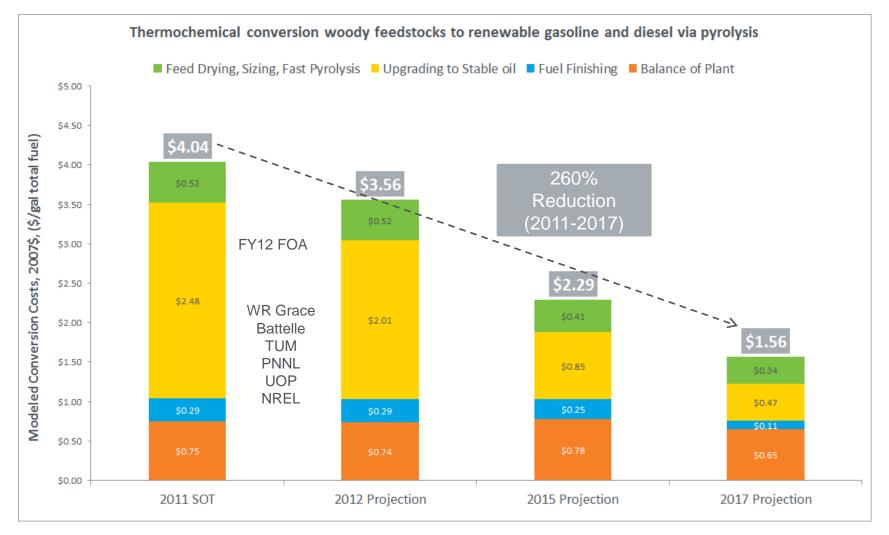
Fast pyrolysis oil is converted to fuels in a 2-step process

ENERGY Energy Efficiency & Renewable Energy

Continuous processing done in fixed and non-fixed bed reactors

- 150 450 °C, 75 150 bars
- 0.1 1.5 LHSV
- 1 10 m³ H₂/L bio-oil
- Wide range of catalysts

Hydroprocessed E Mixed Wo	Petroleum Gasoline		
	Min	Max	Typical
Paraffin, wt%	5.2	9.5	44.2
Iso-Paraffin, wt%	16.7	24.9	
Olefin, wt%	0.6	0.9	4.1
Naphthene, wt%	39.6	55.0	6.9
Aromatic, wt%	9.9	34.6	37.7
Oxygenate, wt%		0.8	

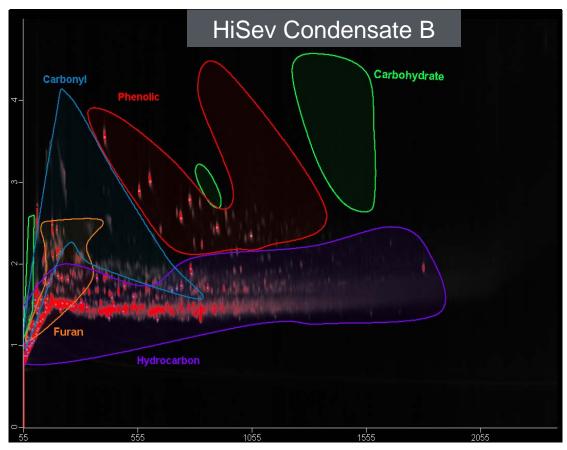

Holmgren, J. et al. NPRA national meeting, San Diego, March 2008.

Fast Pyrolysis Waterfall – 2017

Energy Efficiency & Renewable Energy

U.S. DEPARTMENT OF

2007 Constant Dollar Conversion Costs - Excludes Feedstock Cost



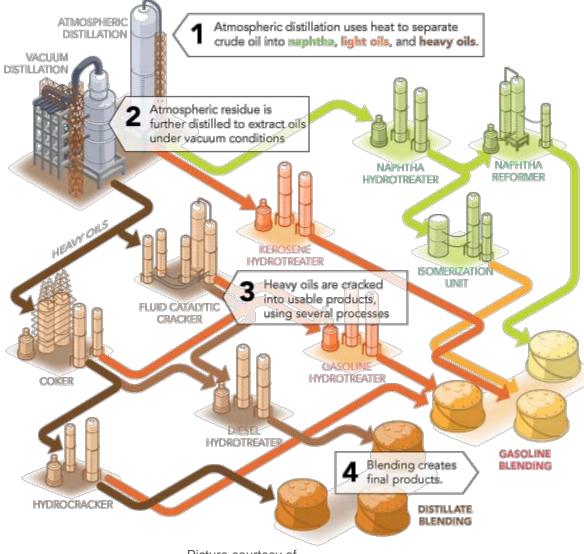
U.S. DEPARTMENT OF

Goal: produce drop-in hydrocarbon fuels in the gasoline, diesel, and jet range

Accomplishments:

- Currently gasoline-range fraction is suitable for blending, however, diesel-range fraction has low cetane
- Utilized 2D GC-GC/MS analysis capabilities to better characterize upgraded products
 - Utilizes sequential gas chromatography (molecular weight and polarity)
 - Product identification by mass spectrometry to provide improved characterization

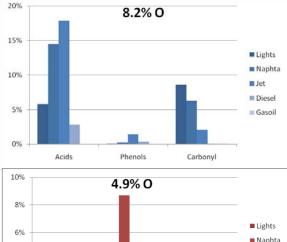
Next: Leverage existing industry interactions to ensure fuel quality

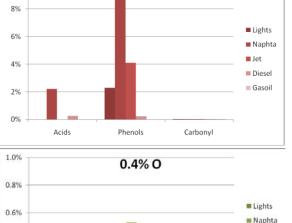

Energy Efficiency & Renewable Energy

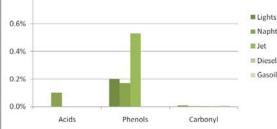
NABC—Use Existing Infrastructure Also Subject of 2012 FOA

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


- Complex but efficient conversion processes
- ~100 years experience
- Refinery partners in National Advanced Biofuels Consortium (NABC) are helping identify how biomass may fit into this construct
- Analysis of materials and experimentation on how the materials may interact in the refinery

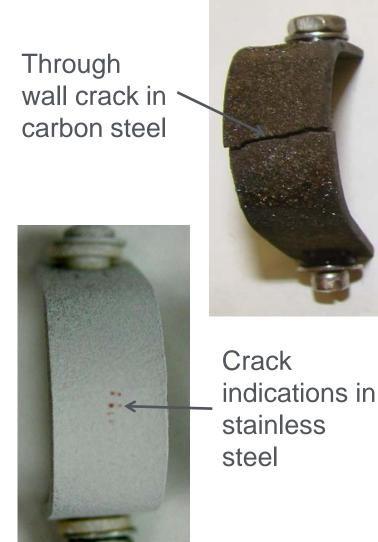



Picture courtesy of http://www.bantrel.com/markets/downstream.aspx

Bio-oil Stabilization for Refinery Integration

Goal: produce materials with lower oxygen content, TAN, and minerals

Accomplishments:


- Stabilize via Hydrotreating
 - Low-severity hydrotreating--bio-oil oxygen content to 5-8%
 - Extending catalyst lifetime by using mild hydrotreating as an initial step in the upgrading
 - Demonstrated 21 days of catalyst lifetime within dual bed
- Produced significant quantities of stabilized bio-oil to provide analyses of earlier point-of-entry into the refinery (Valero/NREL/PNNL)
 - Produced liter-quantities of stabilized bio-oil with oxygen contents of 0.4%, 4.9%, and 8.2%
 - Jet and heavier fractions of 5% oxygen oil have low acids and carbonyls and may be suitable for refineries

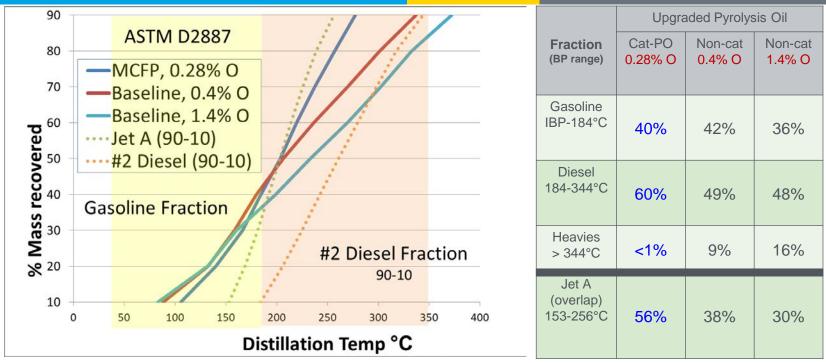
Next:

- 1. Continue stabilization and upgrading projects
- 2. Continue to leverage industry experience
- 3. NABC refinery integration efforts
- 4. New project with PNNL/W.R. Grace

Materials of Construction Corrosion of Samples In Bio-Oil

- Through wall cracks have been found in carbon steel and 2¼ Cr-1 Mo samples after exposure at 50°C
- Samples of 304L and 18 Cr 2 Mo stainless steels developed crack indications after 750 hr at 50°C
- Exposure of these samples is being continued to determine if more extensive cracking will develop

U.S. DEPARTMENT OF


Energy Efficiency &

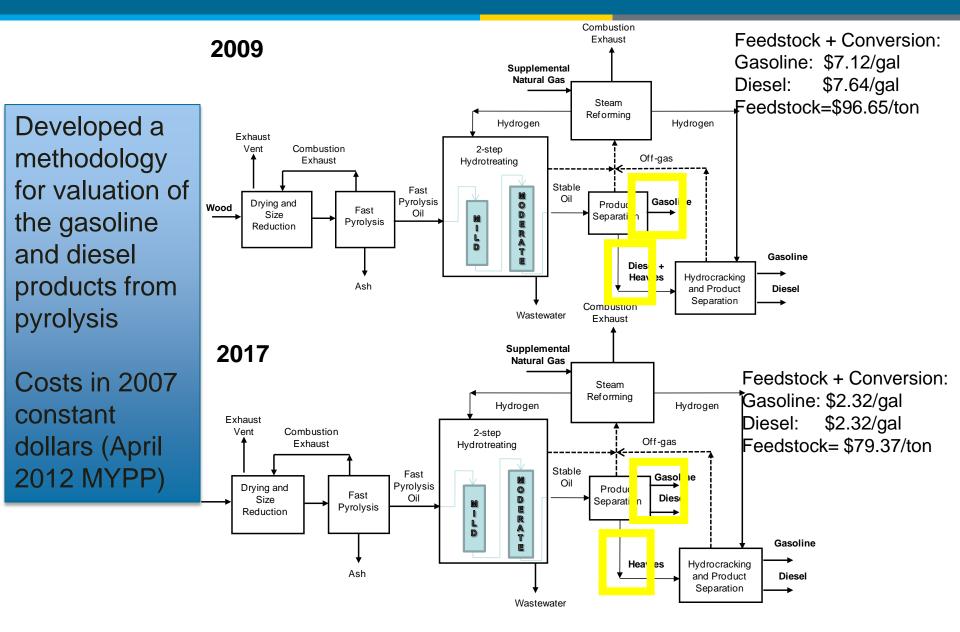
Renewable Energy

Understand Fuel Opportunities

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

From Zacher A, *et al* "Mild Catalytic Fast Pyrolysis of Biomass and Catalytic Hydrotreating to Liquid Transportation Fuels" PNNL-SA-82908


 100% renewable turbine fuel demonstrated through collaboration with UOP (SPK), Boeing, NREL (Py-oil) and PNNL (upgrading)

The hydroplane ran on 98% Bio-SPK and 2% renewable aromatics

Valuation of Fuel Mixtures Gasoline and Diesel

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Jet Fuel Valuation and Impact on other Fuel Products

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

A 0/	Upgraded Bio-oil		Carbon Number				
Area%	Non-cat	Catalytic PO	0 4 8	12	16	20 24	
Paraffinic	28.4%	14.6%	Gasoline			ing Point oon Number	
Olefinic	2.2%	2.4%	_	Jet Fuel			
Cyclic HC	50.6%	50.6%					
Hydroaromatic	2.7%	7.4%		Dì	iesel Fuel		
Aromatic	15.8%	25.0%	0 100	200	300	400	
PAH	0%	0%		iling Point (°		400	

Improve hydrocarbon quality for aviation use

- If cyclic-rich portion will be used as fuel, need to initiate fuel qualification activities
- Residual oxygen-containing molecules are rich in phenolics that boil in the jet range
- Add catalyst step for ring opening (rather than just hydrocracking)
- All while reducing hydrogen use, overall pressure and catalyst costs

Jet fuel is a mid cut. Removing it may devalue both the gasoline and diesel fractions

Catalytic Variants to Liquefaction Routes

Ex situ Catalytic Pyrolysis & Upgrading

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Catalyst

- Metals

Amount

Attrition

Fuel

Vapor Uncatalyzed Catalyst Drying & Biomass Gases Fast Sizing Gases Pyrolysis Liquid Catalytic 🔶 Naphtha Condense Deoxygenation Η, → Diesel & Cracking Solids Water Water In situ Catalytic Pyrolysis & Upgrading Gases Gases Liquid Vapor Catalytic Catalyzed Naphtha Condense Drying & Biomass Deoxygenation Fast H, Diesel Sizing & Cracking **Pyrolysis** Water Solids Water Hydropyrolysis and Upgrading Gases Drying & **Biomass** Pressurize Vapor Catalytic Naphtha Sizing Hydro-Deoxygenation pyrolysis Diesel & Cracking Η, → Solids Water

Yield
Quality (benzene)
System
Complexity
pressure

Direct Liquefaction Routes

Energy Efficiency & Renewable Energy

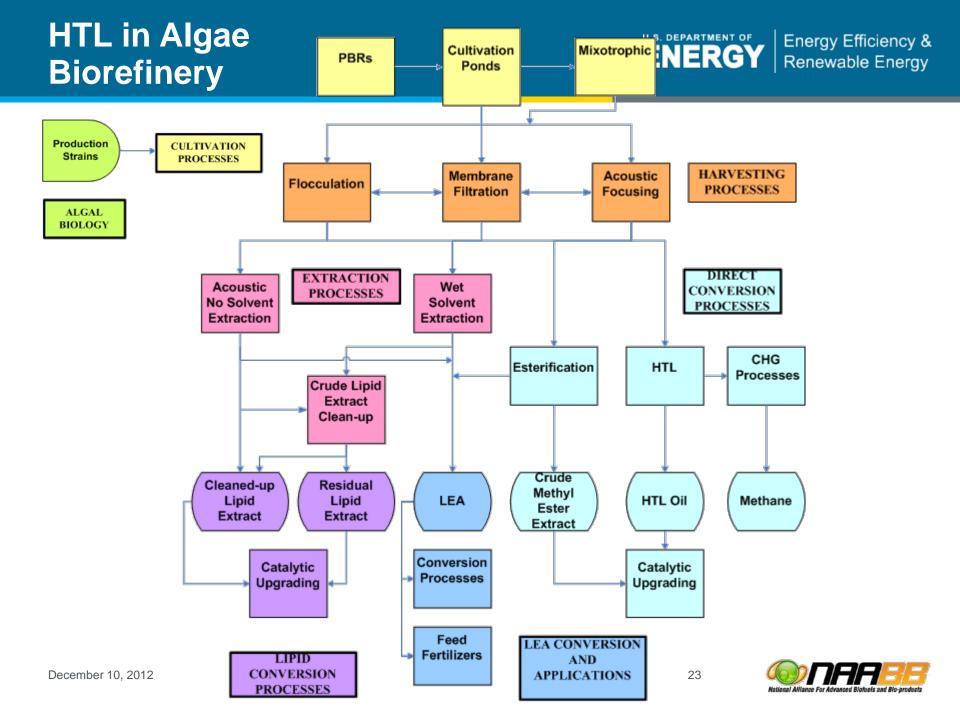
	Uncatalyzed Fast Pyrolysis and liquid phase upgrading	In-situ vapor phase catalytic pyrolysis	Ex-situ vapor phase catalytic pyrolysis	Hydropyrolysis with vapor phase upgrading	Hydrothermal liquefaction and upgrading
Feedstock requirements	2 - 6 mm	?	2 - 6 mm	?	?
Bio-oil Production	Single reactor - atmospheric High CW usage required by rapid quench system & no heat recovery	Single reactor - atmospheric Possible heat recovery and reduced CW demand	Two reactors - atmospheric Possible heat recovery and reduced CW demand	Two reactors - ~300 psi Good heat recovery possible and reduced CW demand. Catalyst maintenance not known, nor is method of lighting off first reactor	Single reactor ~3000 psi. Issues with feeding a high pressure slurry.
Intermediate Bio-oil quality	~50% oxygen plus associated water. More difficult to upgrade, little control over oxygen content	Lower oxygen content in product, likely easier to upgrade	Lower oxygen content, likely easier to upgrade. Two reactors allow more control over gas/liquid/solid, possible lower catalyst inventory than in-situ	Hydrocarbon product	Lower oxygen content in product, likely easier to upgrade. Some ability to affect oxygen content.
Upgrading to hydrocarbon Capital	At least two upgrading reactors in series. Reactors see 100% of the produced water, plus feedstock moisture Feed preheat to first reactor may be difficult	Potentially a single, smaller upgrading reactor Reactors see small fraction of produced water	Potentially a single, smaller upgrading reactor Reactors see small fraction of produced water	not needed	Potentially a single, smaller upgrading reactor Reactors see small fraction of produced water
Upgrading catalyst life	Still short	Potentially longer, depends upon degree of vapor upgrading	Potentially longer, depends upon degree of vapor upgrading	not an issue	Potentially longer, depends upon degree of vapor upgrading
Hydrogen Production	offgas conditioning needed prior to use at H2 plant?	offgas conditioning needed prior to use at H2 plant?	offgas conditioning needed prior to use at H2 plant?	offgas conditioning needed prior to use at H2 plant?	offgas conditioning needed prior to use at H2 plant?
Maximum Hydrocarbon Yield & quality	TBD: Highest from analysis so far, potential to make equal amounts of gasoline and diesel range material, high distillate aromatic content	TBD: Lower than conventional pyrolysis and upgrading so far, high distillate aromatic content	TBD: Lower than conventional pyrolysis and upgrading so far, high distillate aromatic content	TBD: Similar to conventional pyrolysis so far. High distillate aromatic content IH2 makes 2-3.5 times as much gasoline material as diesel	TBD: Similar to conventional pyrolysis so far. High distillate aromatic content
Waste water treatment	No wastewater from fast pyrolysis. Wastewater from upgrading to hydrocarbons very low in organics	WW could have high concentration of dissolved organics	WW could have high concentration of dissolved organics	WW very low in organics (assuming <1% oxygen remains in bio-oil)	WW have high concentration of dissolved organics
Capital cost uncertainties	Upgrading reactors	CPY & upgrading reactors, WWT	VPU & upgrading reactors, WWT	HYP & VPU reactors	HTL reactor, WWT
Distributed processing flexibility	Yes, can uncouple raw oil production from upgrading and hydrogen generation, no front end WWT needed	Yes, can uncouple raw oil production from upgrading and hydrogen generation, but front end includes WWT	Yes, can uncouple raw oil production from upgrading and hydrogen generation, but front end includes WWT		Yes, can uncouple raw oil production from upgrading and hydrogen generation, but front end is expensive & includes WWT

Summary

A techno-economic model for fast pyrolysis of biomass to gasoline and diesel has been developed

The predicted, nth-plant Minimum Fuel Selling Price for 2017 has increased from \$2.04/gal from work in 2009 to \$2.32/gal (2007\$)

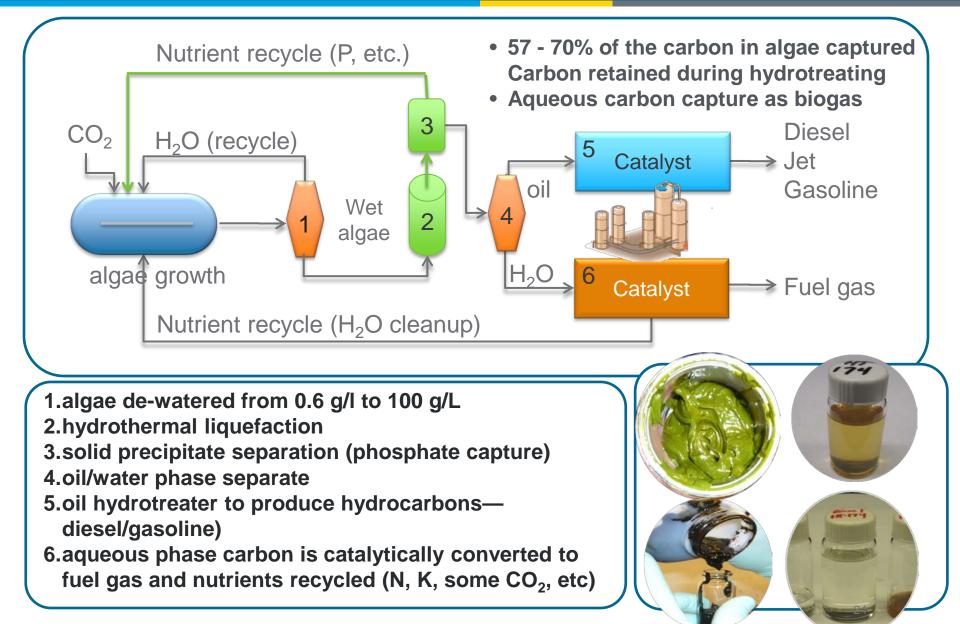
- **Contributors to the increase in MFSP:**
 - Increased grower payment contribution to feedstock cost to stimulate volumes


Enhancements made to the model

- Increased integration of feedstock handling and pyrolysis
- Establishment of 2017 feedstock cost (formerly only went to 2012)
- Model drives targeted research to focus on the technical barriers to enable meeting the 2017 economic targets
 - Increased lifetimes of catalysts (conditioning and fuel synthesis)
 - Biocrude quality (oxygen content, fundamental understanding and corrosion)
 - Improved fuel yields

Scheduled in depth revisit of techno-economics of biomass direct liquefaction routes as new knowledge is obtained in FY2012 leading to new detailed techno-economic analyses in FY2013

Questions



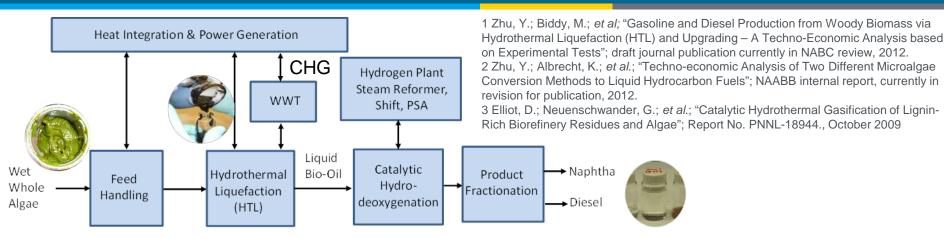
Hydrothermal Liquefaction of Algae

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Algae Derived Lipids

Energy Efficiency & Renewable Energy


- Isomerization
- Cracking
- Commercial technology available for "purified" plant oils but development is continuing for algae
- HTL direct conversion route for algae examined
- Crude bio-oil upgraded to normal paraffins

U.S. DEPARTMENT OF

Whole Algae Hydrothermal Liquefaction and Upgrading

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

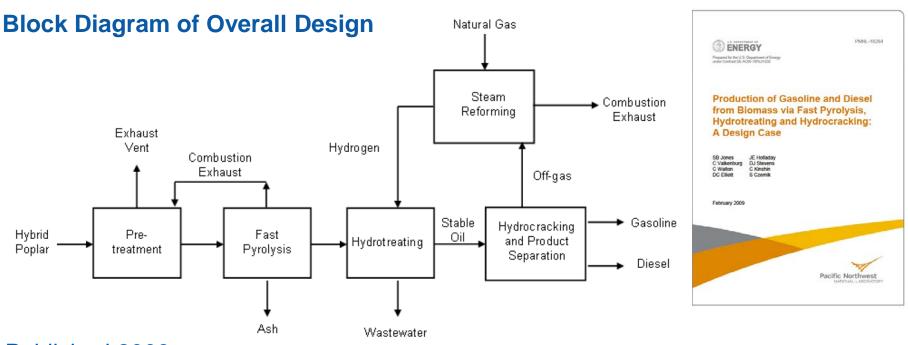
Feed handling: Wet whole algal biomass (~ 20% solids) is pumped to the HTL reactor pressure of ~3000 psia.¹

Hydrothermal Liquefaction (HTL): Whole wet algae at a 20 wt% solids content is hydrothermally treated in subcritical water (2000-3000 psi and 300-350 °C) and 4 v/v/h liquid hourly space velocity (LHSV).²

Waste Water Treatment: Waste water from the HTL process (and upgrading if it is co-located) is sent to a catalytic hydrogasification (CHG) process to convert all organics to CO_2 and CH_4 . For CHG, the wastewater stream is pumped to ~3000 psia, and preheated to 370 °C, then fed to a fixed bed catalytic reactor.³

Catalytic Hydrodeoxygenation (HDO): The organic phase from HTL processing is catalytically hydrotreated to remove oxygen and most of the nitrogen. Bench scale experiments using HTL oil is were run at 407 °C and ~2000 psia to convert the oil to hydrocarbon, water and gas over a two-stage fixed bed reactor system. The overall LHSV is 0.16 v/v/h.² 26

Model Assumptions and Descriptions


Energy Efficiency & Renewable Energy

- 2000 dry metric tons/day of hybrid poplar wood chips input
- Hybrid poplar arrives at 50 wt% moisture and is dried to 7 wt% moisture
- Feedstock particle size 2-6 mm
- Pyrolysis at approximately 500 °C
- Dual stage hydrotreating (approximately 240 and 370 °C)
- Hydrogen production via steam reforming of off-gas and supplemental natural gas
- Hydrotreating of fast pyrolysis oil to a hydrocarbon blend stock with < 2% oxygen
- Hydrocracking of the heavy portion of the hydrocarbon blend stock is required
- Plant is assumed to be established (nth) plant design, rather than first of its kind
- 10% Internal Rate of Return
- 20 year plant life
- 2007 constant dollars
- 15% equipment contingency added to hydrotreating sections
- 35% equipment contingency added to the pyrolysis units
- Stream factor 90%
- Start up time 6 months
- A stand alone plant model and a plant co-locating with an existing refinery model were developed
- Process model built in CHEMCAD[©]
- Capital costs from literature and/or Aspen Economic Analyzer[©]

A Fast Pyrolysis Design Case

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Published 2009
- Reviewers: Biomass Program, NREL, Conoco-Phillips, Ensyn, UOP, VTT, Iowa State University
- Proposed diesel and gasoline fuel production price: \$2.04/gallon (nth plant, 2007\$, stand alone plant, feedstock cost of \$50.70/dry ton)
- Consistent with assumptions in the 2007 technical report Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass NREL/TP-510-41168