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Model of a primary (growing) cell wall
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McCann and Roberts, 1991



The cell walls of grasses are unique among the angiosperms
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Lignified walls surround some specialized cell types but
e greatly to the biomass
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Phenylpropanoid metabolism is
critical for plant survival
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Hatfield R, Vermerris W. (2001). Plant Physiol. 126: 1351-1357



Biological conversion route for biomass to biofuel

Biomass is cut
into shreds
- and pretreated
& with heat and
¢ chemicals to
B¢ make cellulose
accessible to
enzymes.
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Transport costs will limit where biomass feedstocks
are grown
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We need to increase dramatically the carbon and
energy efficiencies of biofuels production
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Conversion technologies for next-generation biofuels

— Sugar

Biomass . Syn gas

1
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Fuel + High-Value Organics

. Pyrolysis
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> Catalytic
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Magnificent six - the six chemicals used as starting
materials in the petrochemical industry
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C3Bio will build the knowledge base of biomass-catalyst
interactions for optimized catalytic pathways and biomass
tailored for its end-use

“Master energy and information on the nanoscale”

Thrust 1
Catalytic conversion

processes : | Thrust 3
- | Tailored biomass

AL AN L ff
Nanoscale iMad! Thrust2 | T80 and nano-catalysts

“remarkable properties of ~ |
matter emerge...control these properties*

This knowledge will allow development of transformational technologies for
the direct conversion of plant lignocellulosic biomass to biofuels and other
biobased products, currently derived from oil, by the use of new chemical
catalysts and thermal treatments.



Thermal treatments may produce a
bio-crude oil for biorefinery fractionation

Gaseous
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& Hydrodeoxygenation

H.O Biofuel

2

'l' Byproducts

Energy source

R. Agrawal and N. Singh, AIChE Journal, 55, 1898 (2009)



NIR and PyMBMS identify maize mutants with
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Converting sugars to alkenes: diol-to-alkene reaction
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J. E. Ziegler, M. J. Zdilla, A. J. Evans, and M. M. Abu-Omar, “"H,-Driven Deoxygenation of

Epoxides and Diols to Alkenes Catalyzed by Methyltrioxorhenium” Znorg. Chem. 2009, 48,
Published on the Web October 6, 2009.
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Partial deoxygenation of model compounds of lignin
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A new tandem-linear quadrupole ion trap (TWIN)
to analyze highly complex mixtures of reaction products
in MS" experiments
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Computational modeling allows design of improved
catalysts

" Forward Model (FM) v
S Catalyst Chemistry |  Microkinetic &
= - S
- Model Model =
4 Reactive Sites Elementary steps IS
a

Energies (DFT) k and K a

Inverse Search

Evolutionary GA search

Iterative cycles lead to Convergence on an accurate FM



A metal catalyst contacts a very limited surface of cell wall.
Can we deliver metal catalysts throughout the volume of the
cell wall and target them to specnflc molecules’
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Tailored biomass - introducing catalysts and
catalytic sites as plants grow
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Long-term impacts of success

more than double the carbon captured into fuel
molecules compared to biological catalytic routes;
expand the product range to alkanes and new energy-
rich aromatic liquid fuels and other value-added
molecules currently made through oxygenation of
petrochemicals;

retain the current liquid fuel infrastructure;

enable the utilization of engineered energy crops:
minimize the agricultural footprint through scalable
and distributive hydrocarbon refineries that substitute
for the present-day oil refinery.
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