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Objectives and Approach

> Objectives

= Develop the enabling science leading to improved or radically new
(heterogeneous) catalytic technologies for viable and economic
operation of biorefineries from various (lignocellulosic) biomass
feed stocks

= Develop technology and enable technology transfer

= Educate the workforce needed to further develop and implement
these new technologies, which in turn will lead to further

sustainable economic growth and reduced energy dependence of
the U.S.

> Approach

= Develop paradigms for major technologies of biorefineries by
picking prototype platforms

www.efrc.udel.edu
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Thermochemical transformation of
lignocellulosic biomass

» Traditional paths entail high temperatures and suffer from

carbon
> CPOX forms no carbon Cat. upgrade
4 Pyrolysis
High T
d Gasification Methanol
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Thermochemical transformation of
lignocellulosic biomass

» Traditional paths entail high temperatures and suffer from

carbon
> CPOX forms no carbon Cat. upgrade
4 Pyrolysis
High T
d Gasification Methanol
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Thermochemical transformation of

lignocellulosic biomass
Cat. upgrade

> Sugar conversion via
fermentation established

= Low rates, expensive
enzymes

HighT Methanol
Synfuel

Hydrolysis
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Thermochemical transformation of

lignocellulosic biomass
Cat. upgrade

> Thermochemical route
exhibits faster rates and
could be tuned

4 Pyrolysis

HighT Methanol
Synfuel

Ethyl levulinate

Thermochemical ENIES Dimethylfuran
Y [= v-valerolactone

Furfural
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Catalytic Fast Pyrolysis/Bio-Oil Upgrade

Overarching Goal: Develop the science-based to
enable the conversion of cellulose to fuels

= Develop an understanding of the catalytic fast
pyrolysis
= Develop and characterize suitable catalysts

= Develop models for diffusion and reaction inside
and outside microporous materials

= Perform kinetic studies

www.efrc.udel.edu
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Catalytic Fast Pyrolysis

> Solid biomass converted into
aromatics in a single reactor at
short residence times:

= Liquid fuel that fits into existing
infrastructure

= Low cost, recyclable zeolite
catalysts

Challenge is controlling
chemistry

(- GASOLINE Co, C0,, WATE{?

Carlson et al., Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass-
derived Compounds, ChemSusChem, 1, 397-400 (2008)

(.
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Catalytic Fast Pyrolysis: Overall yields
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Maximum Yield:
CcOcHy, — 12/22 CHg (63 % Yield) + 48/22 CO (36 % Yield) + 84/22 H,0O
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Cellulose Pyrolysis in TGA at fast heating
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Lin et al., Kinetics and Mechanism of Cellulose Pyrolysis, J. Phys. Chem. C (2009) 113, 20097-20107

www.efrc.udel.edu




"(;; _ —— OFDELAWARE

G. Huber/UMass

Catalysis Center for Energy Innovation

Cellulose Pyrolysis Chemistry
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= Cellulose pyrolysis to anhydro-
sugars

= Complicated gas chemistry

= Coke can form from gas reactions
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Lin et al., Kinetics and Mechanism of Cellulose Pyrolysis, J. Phys. Chem. C (2009) 113, 20097-20107
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Gasoline Range Aromatics
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Reaction Mechanism

Coke

gH
. g o HO}\ CO C02
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: = acid catalyze
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= Dehydrated Aromatics

cellulose anhydro sugars Brodi

Desired Chemistry:

Pyrolysis (homogeneous)
Dehydration (heterogeneous & homogeneous) N
Oligomerization & decarbonylation (heterogeneous) OIS

Undesired Chemistry:
Homogeneous and Heterogeneous coke formation
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Effect of Heating Rate on Catalytic Fast

45 |
-A- Aromatics -l Carbon monoxide
-/\- Carbon dioxide {1 coke

Carbon yield (%)
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Reaction Conditions: Temperature 600°C; ZSM-5;

Feed: Glucose; Catalyst to Feed Ratio 19
COcH,, — 12/22 C,Hg (63 % Yield) + 48/22 CO (36 % Yield) + 84/22 H,0
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Catalytic Partial Oxidation (CPOX)

= Fuel and O, enter at the top

= Valuable chemicals produced:
syngas (H, & CO), olefins,
oxygenates, etc.

= Runs auto-thermally

= Short contact times
(Milliseconds)

Dauenhauer (UMass) and Schmidt (UMN) www.efrc.udel.edu
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CPOX of Cellulose

B
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Catalytic Reforming of Cellulose
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Catalytic Reforming of Cellulose
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Comparison of CPOX to Gasification

Faster — 10 to 100X

« Possibly smaller (portable); Faster, more flexible start-up
Cleaner — Catalyst breaks down volatile organics

* Possibly eliminates downstream clean-up stages
Provides WGS capabilities

» Can add steam to adjust H,/CO ratio for desired output

* Possibly eliminates separate shift stage
Remaining Issues

* Ash handling

* Mechanism / Modeling

* Bio-olll upgrade
Dauenhauer (UMass) and Schmidt (UMN) www.efrc.udel.edu




