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Objectives and ApproachObjectives and ApproachObjectives and ApproachObjectives and Approach

Objectives
D l  h  bli  i  l di   i d  di ll   Develop the enabling science leading to improved or radically new 
(heterogeneous) catalytic technologies for viable and economic 
operation of biorefineries from various (lignocellulosic) biomass 
feed stocksfeed stocks

Develop technology and enable technology transfer

Educate the workforce needed to further develop and implement Educate the workforce needed to further develop and implement 
these new technologies, which in turn will lead to further 
sustainable economic growth and reduced energy dependence of 
the U.S. 

Approach
Develop paradigms for major technologies of biorefineries by 
picking prototype platforms

www.efrc.udel.eduwww.efrc.udel.edu

picking prototype platforms
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l i l i / il i l i / i il dil d

Overarching Goal: Develop the science-based to

Catalytic Fast Pyrolysis/BioCatalytic Fast Pyrolysis/Bio--Oil UpgradeOil Upgrade

Overarching Goal: Develop the science based to 
enable the conversion of cellulose to fuels

Develop an understanding of the catalytic fastDevelop an understanding of the catalytic fast 
pyrolysis
Develop and characterize suitable catalystsDevelop and characterize suitable catalysts
Develop models for diffusion and reaction inside 
and outside microporous materialsand outside microporous materials
Perform kinetic studies

www.efrc.udel.eduwww.efrc.udel.edu
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Catalytic Fast Pyrolysis Catalytic Fast Pyrolysis 

G. Huber/UMass

Catalytic Fast Pyrolysis Catalytic Fast Pyrolysis 
Solid biomass converted into 
aromatics in a single reactor at 
h t id  tishort residence times:

Liquid fuel that fits into existing 
infrastructure
L  t  l bl  lit  Low cost, recyclable zeolite 
catalysts
Challenge is controlling 
chemistrychemistry

www.efrc.udel.eduwww.efrc.udel.edu

Carlson et al., Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass-
derived Compounds, ChemSusChem, 1, 397-400 (2008)
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Catalytic Fast Pyrolysis: Overall yieldsCatalytic Fast Pyrolysis: Overall yieldsCatalytic Fast Pyrolysis: Overall yieldsCatalytic Fast Pyrolysis: Overall yields
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C6O6H12 → 12/22 C7H8 (63 % Yield) + 48/22 CO (36 % Yield) + 84/22 H2O
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Cellulose Pyrolysis in TGA at fast Cellulose Pyrolysis in TGA at fast heatingheating

G. Huber/UMass
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heating rates in TGA
Lin et al., Kinetics and Mechanism of Cellulose Pyrolysis, J. Phys. Chem. C (2009) 113, 20097-20107
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Cellulose Pyrolysis ChemistryCellulose Pyrolysis Chemistry

G. Huber/UMass
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Char
Coke can form from gas reactions

Lin et al., Kinetics and Mechanism of Cellulose Pyrolysis, J. Phys. Chem. C (2009) 113, 20097-20107
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Gasoline Range AromaticsGasoline Range Aromatics

G. Huber/UMass
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Reaction MechanismReaction Mechanism

G. Huber/UMass

Reaction MechanismReaction Mechanism
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Undesired Chemistry:
Homogeneous and Heterogeneous coke formation
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Effect of Heating Rate on Catalytic Fast Effect of Heating Rate on Catalytic Fast 

G. Huber/UMass
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Feed: Glucose; Catalyst to Feed Ratio 19
C6O6H12 → 12/22 C7H8 (63 % Yield) + 48/22 CO (36 % Yield) + 84/22 H2O 
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Catalytic Partial Oxidation (CPOX) 

Fuel and O2 enter at the top

y ( )

Valuable chemicals produced: 
syngas (H2 & CO), olefins, 
oxygenates, etc.

R  t th llRuns auto-thermally

Short contact times Short contact times 
(Milliseconds)
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CPOX of Cellulose
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3 mm

Dauenhauer (UMass) and Schmidt (UMN)
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Catalytic Reforming of Cellulose
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P.J. Dauenhauer, B.J. Dreyer, N.J. Degenstein, L.D. Schmidt, Angewandte ChemieDauenhauer (UMass) and Schmidt (UMN)
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Catalytic Reforming of Cellulosey g

Produce equilibrium q
synthesis gas

Higher C/O = more H2 + 
CO

Less than 1% methane

At C/O < 1.0, no 
oxygenates

www.efrc.udel.eduwww.efrc.udel.eduP.J. Dauenhauer, B.J. Dreyer, N.J. Degenstein, L.D. Schmidt, Angewandte ChemieDauenhauer (UMass) and Schmidt (UMN)
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Comparison of CPOX to Gasificationp

Faster – 10 to 100X
Possibly smaller (portable); Faster more flexible start up• Possibly smaller (portable); Faster, more flexible start-up

Cleaner – Catalyst breaks down volatile organics
• Possibly eliminates downstream clean up stages• Possibly eliminates downstream clean-up stages

Provides WGS capabilities
• Can add steam to adjust H2/CO ratio for desired outputCan add steam to adjust H2/CO ratio for desired output
• Possibly eliminates separate shift stage

Remaining IssuesRemaining Issues
• Ash handling
• Mechanism / Modeling

www.efrc.udel.eduwww.efrc.udel.edu

g
• Bio-oill upgrade

Dauenhauer (UMass) and Schmidt (UMN)


