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Logistic Requirements Corn Stover 
Plant Operation Size (delivered tonsa) 800,000 DM ton/yr 
Feedstock Harvested Annuallyb 868,600 DM ton 

Acres Harvested Annually 527,000 

Participating Acres 50% 

Acres Available for Contract 1,054,000 

Cultivated Acres 2,107,000 

Feedstock Draw Radiusc 45.8 miles 

a. short ton = 2,000 lb. 
b. Extra tonnage harvested to account for supply system losses. 
c. Assume an equal distance distribution of acres throughout the draw radius. 

2012 Herbaceous (Corn Stover) 
Feedstock Design  

Material Specifications Corn Stover 
Carbohydrate Content 60% 

Moisture Content 12% 

Particle Size ¼ minus 

Ash Content 5-6% 

Sustainability Limiting Factors 
Soil Organic Carbon 

Wind/Water Erosion 

Plant Nutrient Balance 

Soil/Water Temperature Dynamics 

Soil Compaction 

Off-Site Environmental Impacts 
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Feedstock Logistics Cost Improvement 
Pathway (2007 $) 

Transportation/Handling – 
Indirect gains due to 
improved bale density and 
reduced losses (shrink) 
 
Preprocessing – direct 
improvements in grinder 
efficiency and capacity 
 
Storage/Queuing – Lower 
cost storage methods, and 
reduce uncertainty of 
storage losses (e.g., 
preserve the 60% 
carbohydrate target) 
 
Harvest/Collection – 
Improved Harvest/collection 
efficiency (i.e., a yield 
component) while not 
violating sustainability limits, 
and biomass quality (namely 
ash) targets 
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Feedstock Logistics Factors 
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Development and Characterization of 
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Thermochem Quality Specs 

Particle Size & Distribution 

• 2-6 mm 

10% 

<1% 
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Uncontrolled Variability Costs Money 
(e.g., Biochem Quality Specifications) 

Particle Size & Distribution 

• DOE Design: ¾-in. minus 

• IBR: 2-in. minus 

• AFEX: ¼-in. minus, narrow PSD 

 

59% 20% 

7% 

Mitigate Uncertainty 
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Feedstock R&D Elements to Address 
Biomass Compositional Uncertainty 

Preprocessing Raw Biomass to Feedstocks Specs 

Raw Biomass Development and Best Management Practices 

Formulation Densification 

Harvest, Collection, & 

Storage 

Preconversion 

Plant Biotechnology 
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Harvest and Collection Efficiency 
Improvements 

• Start: 43% Harvest/Collection Efficiency 
• Current: 75% Harvest Collection Efficiency 
• Assumptions: Biomass <20% moisture, 

Bale Bulk Density 12 lbs/ft3 
• Successes: 

– OEMs have Improved Machine Performance 
– Residue Removal Tool: 

• Quantify multi-factor sustainability limits 
• Increase removal rate as guided by 

sustainable residue removal plans  
– Mitigate soil contamination associated with 

increasing collection efficiencies, based on: 
• Residue type and fraction 
• Soil type 
• Target removal rate 

– Improved procedures for bale sampling 

Harvest/Collection Efficiency 
– the ratio of biomass 
collected to the amount 
available in the field 
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Collection Efficiency –  
 A Tradeoff with Quality 

• As material collection rates increase, the fraction of entrained soil 
increases as well 

• The ash content of a bale depends largely on collection technique 
and field conditions. 

• Conventional windrowing and baling of biomass does not actively 
seek to minimize ash. 
 



11 | Biomass Program eere.energy.gov 

Best Management Practices: Ash 
Reduction 

Goal: Reduce ash content to physiological 
levels (5-6 wt%) 

Results are highly variable depending on 
• Stover fractions 
• Removal rate 
• Field/soil conditions 

Windrowing 

Treatment 

Bale 

Comp. 

Moisture 

Range 

Ash 

(%, dry) 

Cost 

($/dry ton) 

Wheel Rake MOC lower 10-17 $4.50 - $8.30 

Bar Rake MOC lower 7-14 $3.10 - $6.60 

Flail 

Shredder 

MOC/ 

Stubble 

higher 9-19 $4.00 - $9.50 

Single-pass MOC/Cob variable 4-12 $1.70-$5.50 

MOC = Material-Other than-Cob (upper stalk, husk, leaf)  
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Preprocessing to achieve final ash 
spec  

Mechanical Preconversion 
• Removal of non-

structural ash (soil) 
• Fractionation & 

separation of high ash 
anatomical fractions 

• Sieving to remove soil 
 

Chemical Preconversion 
• Removal of structural 

ash 
• Hot water 
• Acidic 
• Alkaline 
 

N=840 
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Sugar Content in Biomass Sources & 
Intermediates – Biomass Library Data 
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Sugars Spec: 

59% 

N=742 

Moisture 

Final sugar content is 

tightly coupled to the 

impact of moisture 

biomass stability 
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Moisture Management in Wet 
Storage 

• Conventional approach: ensiling for 
long-term storage 

• BMP approach combines moisture 
content and time to accommodate 
baled storage of wet material based 
upon “shelf-life”—opens door to 
conventional storage over wider 
moisture range 

• Shelf-life implies temporal stability 
defined by 

– Extent of degradation 
– Rate of degradation 

• Shelf-life influenced by 
– Moisture content 
– Self-heating 
– Stack configuration 
– Environmental factors 
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Composition and Value 

• Extent of loss over time determines value threshold. 
– Structural carbohydrate loss leads to ethanol yield loss. 

• Regions that stay wet suffer in terms of composition and value. 

 
 
 
 
 
 
 
 

• Regions that dry while in storage retain composition and value. 

 

Value indistinguishable from initial material 

17 – 24 $ / DMT Difference 

   1’          2’          3’         4’ 
Drying Front / Time (9 Months) 
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Moisture Management in Dry 
Storage 
• Conventional approach: <15% moisture content = stable dry storage 
• Moisture gain and migration results in significant losses even in materials 

that enter “dry” 
• Moisture management requires a system approach (aggregation of bale 

properties, stack configuration, and environmental influences) 
 

• Tarp covered stack in storage 
• Initial moisture content of 13.8% (wb) 

• 20 gallons of water in a single bale 
• 80 gallons in a 4-high column 
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Residence time drying 
using low-grade (waste) 
heat prior to processing 

Preprocessing to achieve final 
moisture spec  
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BMP: Sugar preservation in 
storage 

Best Management Practices for 
Sugar Preservation 
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Sugars Spec: 59% 

- Best Management Practices 

- Densification 

Stabilization through densification 

N=742 
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Formulation 
• Aggregation – 

blending of same 
biomass type to 
spec 

• Blending – 
multiple resource 
types to spec 

• Amendment – 
blend with source 
of cheap sugars 

Preprocessing to achieve final sugar 
spec  

0

20

40

60

80

100

120

14 18 22 26 30 34 38 42 46 50 54 58 62 66

F
re

q
u

e
n

c
y
 

%Glucan & Xylan 

Sugars 
Spec: 59% 

Formulation/Blending 

N=742 



20 | Biomass Program eere.energy.gov 

Feedstock R&D Beyond 2012 – Expands 
beyond cost to actively manage quality 

1. Density and Stability 2. Conversion (or end use) 
Performance 

( whether solid, pyrolysis oil, or fermentable liquid, all share 
common concepts, hurdles, and barriers) 

1. Infrastructure Compatible (16 lb/ft3 

in field to >48 lb/ft3 in supply 

system) 

2. Long-term stability in supply 

system (years, like grain or coal) 
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