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2012 Herbaceous (Corn Stover) w3, oerasruent or | Energy Efficiency &

FeedStOCk Design ENERGY Renewable Energy

Plant Operation Size (delivered tons?) 800,000 DM ton/yr

Feedstock Harvested Annually® 868,600 DM ton

Acres Harvested Annually 527,000

Participating Acres 50%

Acres Available for Contract 1,054,000

Cultivated Acres 2,107,000

Feedstock Draw Radius® 45.8 miles

a. short ton = 2,000 Ib.

. b. Extra tonnage harvested to account for supply system losses.

w—l c. Assume an equal distance distribution of acres throughout the draw radius.
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Feedstock Logistics Cost Improvement s oemsaruentor | Energy Efficiency &

Pathway (2007 $) ENERGY Renewable Energy

$65.00

Transportation/Handling —
M Transportation and Handling

$60.00 _ —{ Indirect gains due to
655.00 :ztrjz;’::s:éueumg || improved bale density and
_ reduced losses (shrink)
$50.00 M Harvest and Collection -
$45.00 | Preprocessing — direct
64000 improvements in grinder
efficiency and capacity
$35.00
$30.00 Storage/Queuing — Lower
1 cost storage methods, and
$25.00 reduce uncertainty of
$20.00 | storage losses (e.g.,
$15.00 . preserve the 60%
carbohydrate target)
$10.00 -
$5.00 - Harvest/Collection —
5000 | | 1 | | , | | Improved Harvest/collection

2005 SOT 2006 SOT 2007 SOT 2008 SOT 2009 SOT 2010S0T 2011 2012 efﬁCIenCy (I -€. ’ a yl eld
component) while not

violating sustainability limits,
and biomass quality (namely
ash) targets

Total Feedstock Logistics Cost ($/DM ton)
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Feedstock Logistics Factors ENERGY | Siiceney &

Renewable Energy
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Development and Characterization of us.oepaRTMENT OF | Enargy Efficiency &

Process Intermediates ENERGY | renewabie Energy

Stored
Intermediate
Specification

Specifications
for Multiple
Pelltoed Formats

Input
Specifications

)

Final
Conversion
Specifications

Blending Delivery

Specifications

Specifications

Terminal Network

Biomass Supply
Interface

#8 Biomass Spec
Performance in
Gasification

#9 Biomass Spec
Performance in Gas
C&C

Fuel Synthesis

#7 - Biomass Input
Specifications

Trareport, Handlirg, Storage *
Transport, Handiing; Siemg #10 Biomass Spec

Performance in Fuel
Synthesis

hesion (lPa M Trarsport, Handling, Storag w
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U.5. DEPARTMENT OF Energ}r Efﬁcier‘lc‘f &

ThermOChem Quallty SpeCS ENERGY Renewable Energy
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Uncontrolled Variability Costs Money s oemsaruentor | Energy Efficiency &

(e.g., Biochem Quality Specifications)

ENERGY Renewable Energy
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Feedstock R&D Elements to Address .. couwmeor | energy Eficioncy &
- 11 I ENERGY Renewable Ener
Biomass Compositional Uncertainty 2

r

Raw Biomass Development and Best Management Practices

‘:
s

{ . i ?i Harvest, Collection, &
Plant Biotechnology . Storage

Preprocessing Raw Biomass to Feedstocks Specs

W ; ey P ’
R I o T s
¥y ;,1'.1,' W% :
NEFETAD iR :

Preconversion p - Densification
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Harvest and Collection Efficiency s oxmaxruewror | Energy Efficiency &

ImprOvementS ENERGY | renewable Energy

« Start: 43% Harvest/Collection Efficiency
« Current: 75% Harvest Collection Efficiency

« Assumptions: Biomass <20% moisture,
Bale Bulk Density 12 Ibs/ft3

* Successes:
— OEMs have Improved Machine Performance

— Residue Removal Tool: Harvest/CoIIectlon EfflClency
* Quantify multi-factor sustainability limits — the ratio of biomass
* Increase removal rate as guided by collected to the amount
sustainable residue removal plans available in the field

— Mitigate soil contamination associated with
increasing collection efficiencies, based on:

» Residue type and fraction
« Soil type
» Target removal rate
— Improved procedures for bale sampling
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Collection Efficiency —

Energy Efficiency &

A TradeOﬁ: W|th Qua“ty ENERGY | renewable Energy

 As material collection rates increase, the fraction of entrained soil
increases as well

« The ash content of a bale depends largely on collection technique
and field conditions.

« Conventional windrowing and baling of biomass does not actively
seek to minimize ash.
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Best Management Practices: Ash

Energy Efficiency &

Reductlon ENERGY Renewable Energy
Windrowing Bale Moisture | Ash Cost
Treatment Comp. Range | (%, dry) | ($/dry ton)
Wheel Rake MOC lower 10-17 | $4.50 - $8.30
Bar Rake MOC lower 7-14 $3.10 - $6.60
Flail MOC/ higher 9-19 $4.00 - $9.50
Shredder Stubble
Single-pass | MOC/Cob | variable 4-12 $1.70-$5.50

MOC = Material-Other than-Cob (upper stalk, husk, leaf)

Goal: Reduce ash content to physiological
levels (5-6 wt%)

Results are highly variable depending on

« Stover fractions

« Removal rate

» Field/soil conditions
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Preprocessing to achieve final ash s, oeeasmuswt o | Eeray Effiiency &

S peC ENERGY | renewabie Energy

Mechanical Preconversion

Removal of non-
structural ash (soil)

|
hl Mechanical Preconversion . Fractionation &
separation of high ash
anatomical fractions

« Sieving to remove sall

TC:1% BC: 7% N=840

—==COorn Stover e==Miscanthus ==\Wheat

160

140

120

Chemical Preconversion

100

>
2 80
(] . .
= o Chemical Preconversion
i
« Removal of structural
40
st Management Practices. ="
est Management Practices

20 9 « Hot water

° o T . 15 17 19 21 23 25 27 29 31 33 35 37 3 * ACIdIC

20  Alkaline
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Sugar Content in Biomass Sources & w3 oerasruentor | Eneray Efficiency &

Intermediates — Biomass Library Data ENERGY | renewable Energy

Sugars spej;; Final sugar content is
140 R 59% tlghtly coupled to the
120 impaCt of moisture
1:«; biomass stability
§ 60
S 40
v Moisture
0 60
Lo 34 36 38 40 42 44 46 48 50 52 54 56 58J60 62 64 66 Corn Stover
I 50 N=339

% Glucan & Xylan

=009 Harvest ===2010 Harvest

Frequency
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Moisture Management in Wet

Energy Efficiency &

Sto rage ENERGY | renewable Energy

« Conventional approach: ensiling for
long-term storage

 BMP approach combines moisture
content and time to accommodate
baled storage of wet material based
upon “shelf-life’—opens door to
conventional storage over wider
moisture range

70 \ » Shelf-life implies temporal stability
°0 N defined by
50
- \\ N — Extent of degradation
& 4 :
g 3 ~] /A — Rate of degradation
= 20 . .
5 . f h ; » Shelf-life influenced by
5 AN
£ o v A v Bottom Bale | — Moisture content
, —\liddle Bale
-10 H .
o W w VJW — et e — Self-heating
0 TneRa — Stack configuration
10/14/09 12/3/09 1/22/10 3/[2)[3:30 5/2/10 6/21/10 8/10/10 _ EnV'ronmentaI faCtOFS

NL



Composition and Value ENERGY | "o Effciency &

Renewable Energy

« Extent of loss over time determines value threshold.
— Structural carbohydrate loss leads to ethanol yield loss.

» Regions that stay wet suffer in terms of composition and value.
17 - 24 $ | DMT Difference

1! 2! 3, 4!

Initial Drying Front / Time (9 Months)
321 18.5 13.6 13.0 Moisture
’ : : : Content (% wh)
Theoretical
87 e 89 80 EtOH Yield
Theoretical
$188.00| $185.00 | $191.00 | $171.00 Feedstock Value
(E1OH $/DMT)

Value indistinguishable from initial material

« Regions that dry while in storage retain composition and value.
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Moisture Management in Dry s arsmumwror | Eor Efficiancy &
Storage ENERGY Renewable Energy

« Conventional approach: <15% moisture content = stable dry storage

» Moisture gain and migration results in significant losses even in materials
that enter “dry”

» Moisture management requires a system approach (aggregation of bale
properties, stack configuration, and environmental influences)

. 3 MONTHS . 6 MONTHS . 9 MONTHS

0
4 5 6 7 8 0 1 2 3 4 5 6 7 8
Ft. Horiz.

« Tarp covered stack in storage 20 gallons of water in a single bale

« |nitial moisture content of 13.8% (wb) 80 gallons in a 4-high column
16 | Biomass Program
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Preprocessing to achieve final v corasuanr o | Enonay Effidency &
mOISture SpeC ENERGY | renewable Energy

Moisture
TC:10%  BC:20%

60
Corn Stover
50 N=339
Active Drying
40

Residence time drying
using low-grade (waste)
heat prior to processing

Frequency
w
o

N
o

10

% 13% 15% 18% 2% 23% 25% 28% 30% 33% 35% 38% 40% 43% 45% 48%
% H20

High temp., low residence
time drying
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Best Management Practices for s, oeeasmuswt o | Eeray Effiiency &

Sugar Preservat|on ENERGY Renewable Energy

Sugars Spec: 59%

120
N=742

100

(o]
o

" - Best Management Practices
- Densification

BMP: Sugar preservation in
storage

Frequency
3

40

20

14 22 26 30 34 3 46 50 54 5 62 66
%0Glucan & Xylan

Stabilization through densification
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Preprocessing to achieve final sugar .. cowmeor | gnergy Eficioncy &

S peC ENERGY | renewabie Energy

Formulatlon. Sugars Spec: 59%
» Aggregation — .
blending of same N=r4z
biomass type to e
spec
* Blending —
multiple resource
types to spec ?

« Amendment — 20
blend with source
Of Cheap Sugars 14 18 22 26 30 34 38 42 4060 50 54 5 62 66

%Glucan & Xylan

0]
o

" Formulation/Blending

Frequency
(o]
o
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Feedstock R&D Beyond 2012 — Expands s oemenror | gnergy Efficiency &

beyond cost to actively manage quality ERGY | renewabie Energy

1. Density and Stability 2. °°“‘§J§E’Pm‘§£ gend use)

| Multiple Biorefineries

Local Conversion

Grade A Commodity Attributes
Feedstock * On-spec quality
(Material the g”'fOTT df?Slty :
COnversion process onsistent forma
was developed - Sta_ble
around) * Reliable supply
* Infrastructure compatible

Shipping
Terminal Elevator
I I ' l I I I Rail, Truck, or Barge
= E——

i

ﬂ (onv;.":s’gi:):1 (()E;]zc::cr:;)cal or Manage
Wet Herbaceous Residues Dry Herbaceous Residues 1150810 » Moisture content
. * Ash
1. Infrastructure Compatible (16 Ib/ft? + Sugar
in field to >48 Ib/ft® in supply .
Iverse
system) - Field Run + Format
2. Long-term stability in supply Biomass * Density

* Compositional properties

system (years, like grain or coal)

"i ( whether solid, pyrolysis oil, or fermentable liquid, all share
n"l> common concepts, hurdles, and barriers)
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