

Energy Efficient Buildings

> Presentation at the U.S. DOE Building Technologies Office Peer Review Meeting

> > Henry C. Foley April 3, 2013

Problem Statement

- Building energy efficiency has not increased in recent decades compared to other sectors especially transportation
- Building component technologies have become more energy efficient but buildings as a whole have not

Impact of Project

 A 20% reduction in commercial building energy use could save the nation four quads of energy annually

Project Focus

- This is more than a technological challenge; the technology needed to achieve a 10% reduction in building energy use exists
- The Hub approach is to comprehensively and systematically address market, government, workforce, and technical impediments
- The EEB Hub focuses on integrated systems approaches addressing technology, people, and information.

Dual E-RIC Mission

Reduce energy use in buildings **Regional economic development**

Department of Energy

\$122 million: Penn State

Small Business Administration

\$1.3 million: Wharton SBDC

Economic Development Administration

\$3 million: Penn State

\$2 million: Ben Franklin Technology Partners

National Institute of Standards and Technology

\$1.5 million: Delaware Valley Industrial Resource Center

Commonwealth of Pennsylvania

\$30 million: Penn State

PA

Chester

Goal, Vision, and Mission

OVERALL GOAL:

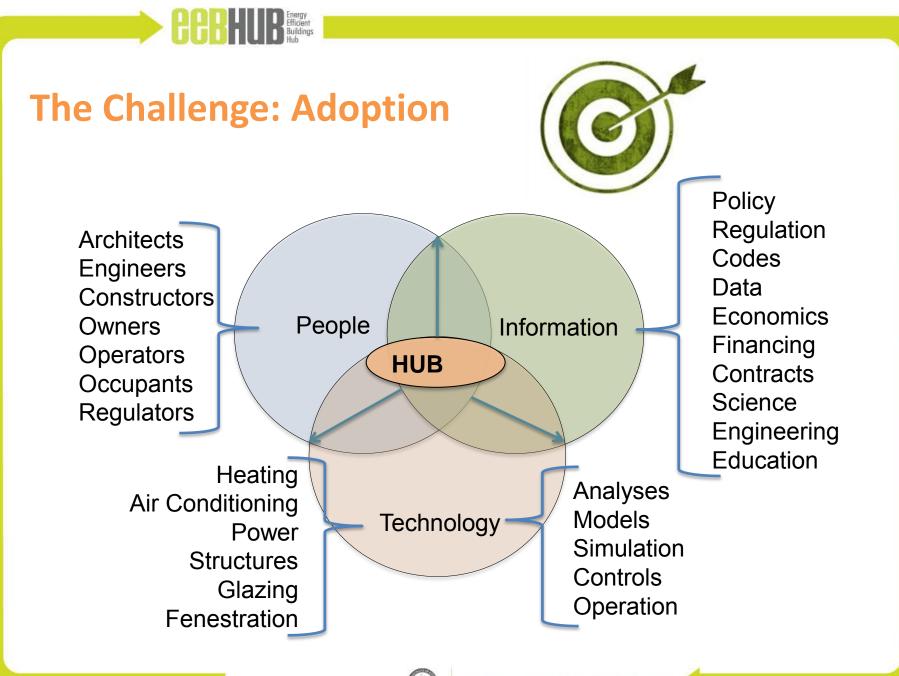
Reduce energy use in commercial buildings in Greater Philadelphia by 20 percent by 2020.

VISION:

Design and demonstrate in Greater Philadelphia scalable market proven solutions to reduce energy use in commercial buildings and deploy these solutions throughout the nation.

MISSION:

Accomplish the goal through informed people, validated information, and proven technologies.



Objectives

- 1. Develop and deploy state-of-the-art modeling tools to support energy efficient design, construction, commissioning, and operation.
- 2. Demonstrate the market viability of integrating energy saving technologies for whole building system solutions
- 3. Identify strategies that will accelerate market adoption of energy efficient retrofits of commercial buildings in the Greater Philadelphia region.
- 4. Inform and educate people who design, own, construct, maintain, or occupy buildings about energy saving strategies and technologies.
- 5. Assist entrepreneurs to launch business ventures to exploit market opportunities for providing whole building energy saving solutions.

An Emergent Organization

Twenty-two initial performers

• Now twenty-five

Not a closed consortium

Dynamic association

Driven by performance

Capabilities spanning:

- Research
- Development
- Demonstration
- Deployment

Shared governance model

Penn State **Balfour Beatty Bayer MaterialScience** Ben Franklin Technology Partners of SE PA **Carnegie Mellon University Delaware Valley Industrial Resource Center Drexel University IBM** Corporation Lawrence Livermore National Laboratory Massachusetts Institute of Technology Morgan State University New Jersey Institute of Technology Pennsylvania College of Technology Philadelphia Industrial Development Corporation **Princeton University** Project Based Learning, Inc. **PPG** Industries **Princeton University** Purdue University **Rutgers University United Technologies Corporation** University City Science Center University of Pennsylvania University of Pittsburgh Virginia Tech

The Navy Yard

- Redevelopment project of regional and national significance
 - Redevelopment Master Plan updated January 2013
 - 10,000 jobs as of January 2013
 - Mix of industrial, commercial and government uses
- Test bed for energy research and demonstration
 - Independent unregulated micro-grid
 - Energy Master Plan completed January 2013
 - 270 buildings
 - Early 19th Century to new construction
 - Most occupied and some awaiting redevelopment,
- Multiple DOE Centers
 - Mid-Atlantic Clean Energy Applications Center
 - Northern Mid-Atlantic Solar Training Center
 - GridSTAR Smart Grid Center
 - Energy Efficient Buildings Hub

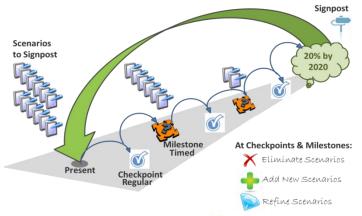
Metrics Team: LLNL, Bayer, Penn State

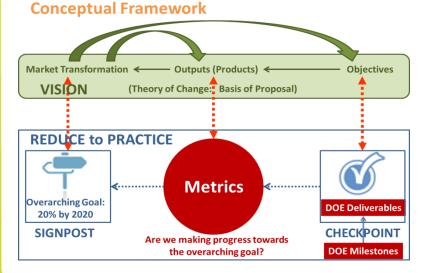
Deliverable

Example of BP3 Deliverable, Milestone, & Metric

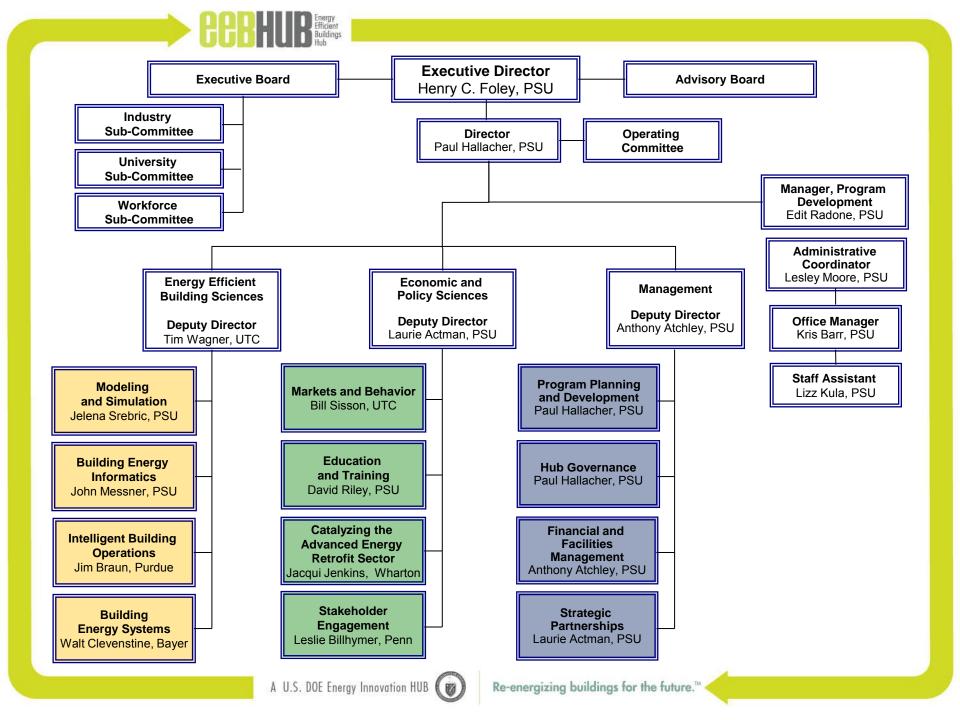
One Goal: 20% by 2020 **Five Objectives** Seven Deliverables Ten Tasks, 38 Subtasks Subtask Level Milestones Task Level Metrics

Milestone


Metric


Ten market-based or behaviorally oriented strategies, tools, approaches, or programs delivered to public and private sector decision makers that could yield up to 30% annual energy savings in applicable commercial buildings

Track, by phase of development (conceptual, draft, review, or deliver) the number of subtask strategies, tools, studies, or other content that have at least a 50% likelihood of producing an output during the course of the budget period. Each of these efforts should be measured on the likelihood for achieving up to 30% energy reduction impact when delivered.


By 9/30/2013, the assessment of the potential of Performance-Based Codes and Standards to achieve energy use goals for the Greater Philadelphia Region is reviewed by market actors.

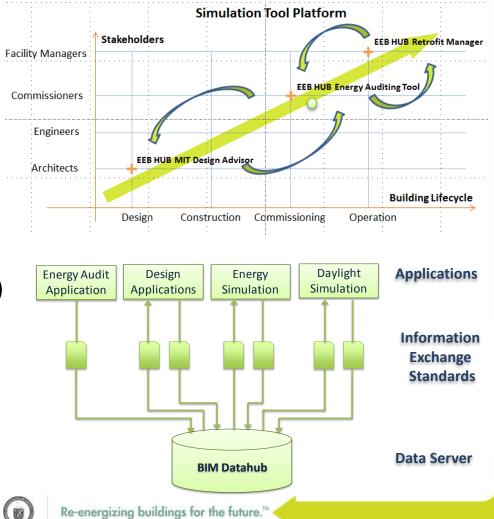
Measurement Framework

EEB Hub 2013 Task Leaders

- Modeling and Simulation, Jelena Srebric, Penn State
- Intelligent Building Operations, Jim Braun, Purdue
- Building Energy Informatics, John Messner, Penn State
- Building Energy Systems, Walt Clevenstine, Bayer MaterialScience
- Policy and Markets, Bill Sisson, United Technologies
- Education and Training, David Riley, Penn State
- Catalyzing the AER Sector, Jacqui Jenkins, Wharton School of Business
- Stakeholder Engagement, Leslie Billhymer, University of Pennsylvania

Integrated Design and Delivery

Cloud-based simulation platform supporting four retrofit types:

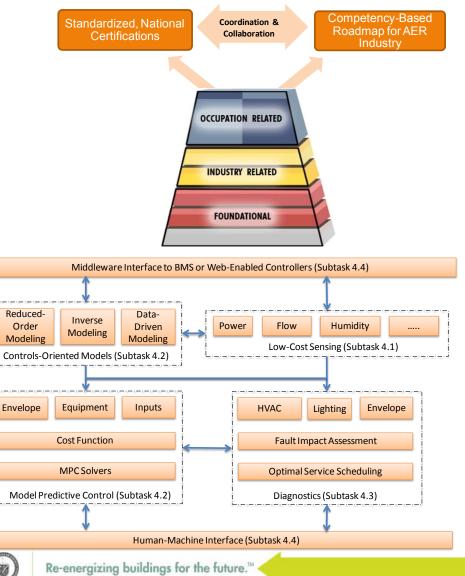

- Light
- Partial
- Substantial
- Comprehensive

Interoperability throughout building design and delivery:

 Building Information Modeling (BIM) Datahub using open information standards

A U.S. DOE Energy Innovation HUB

 Coordinated with BTO Standard Energy Efficiency Data (SEED) Platform


Optimizing Building Performance

Education and Training

- Delivering Building Operator Certificate program
- Delivering Building Retuning training with PNNL
- Building on BTO Job and Task Analysis Project

Intelligent Building Operations

- Prototype building operations platform that overlays on existing building control system
- Cost effective deployment of advanced sensor, control, diagnostic and decision-making
- Demonstrations underway in commercial buildings

Advanced Energy Retrofit Demonstration Projects

1 Montgomery Plaza, Norristown, PA

Montgomery County

1973 mid-rise Curtain wall office 215,000 sq. ft.

- Monitoring and verification (M&V) system installed
- AER includes integrated design process
- Demonstrating integrated window, walls distributed HVAC, lighting, and control technologies

Building 489, Navy Yard

P&A Associates

1926 brick 32,000 sq.ft.

- M&V installed
- Contemporary core & shell renovation with tenant fitout represents current practice
- · After baseline defined, retro-commission building
- Hub recommended energy conservation measures (ECMs) based on analysis of M&V

Harvest Grille Glen Mills, PA

Dave Macgrogan Associates

2010 fit-out 6000 sq. ft.

- M&V, web-enabled thermostats installed
- AER demonstrating distributed HVAC controls & advanced control algorithms

Swope School of Music West Chester, PA

West Chester University

2007 brick & concrete 90,000 sq.ft.

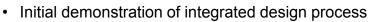
- EEB Hub installed M&V system
- Demonstrating advanced energy management system overlaying existing controls and integrating system diagnostics with optimal control algorithms

Advanced Energy Retrofit Demonstration Projects

Building 100, Navy Yard

PNA 100 Associates

1901 brick barracks Renovated to offices 32,000 sq. ft.



- M&V system installed
- Demonstration of minimal sub-metering required to establish actual building performance.

Building 661, Navy Yard

Penn State

1942 brick building 36,500 sq. ft.

- Incorporates three distinct energy retrofit approaches for different occupancy usages
- Broadly applicable to brick building archetype

Building 1, Navy Yard

U.S. Navy

1875 brick building, 34,000 sq. ft.

- Performed energy audit & recommended ECMs.
- Installing M&V, benchmarking building and systems
- Researching window replacements that are energy efficient, cost-effective and that can meet "Minimum Antiterrorism Standards for Buildings".

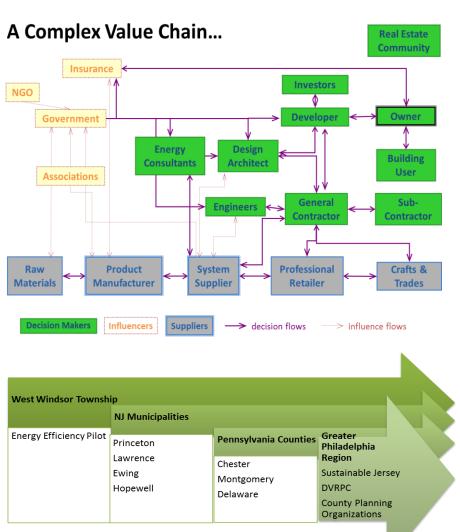
Building 101, Navy Yard PIDC

1911 brick building Renovated to offices 34,000 sq. ft.

- · Extensive M&V installed and commissioned
- Multiple energy audits conducted
- Demonstrating advanced energy management system overlaying existing controls
- Investigating additional ECM

Deploying Energy Saving Systems

HVAC & Envelope Integration


- HVAC approaches and optimizations
- Vertical envelope alternatives Window & Lighting Integration
- Day-lighting, glazing
- Artificial illumination Integrated Roof Replacements
- Roof insulation optimization
- Skylights, white roofs, etc.

Indoor Environmental Quality

- IEQ & energy savings trade-offs
- Keeping user satisfaction in mind

West Windsor, NJ Deployment Pilot

- Codes, standards, and incentives that foster investment in energy efficiency
- Expanding to NJ, PA, and beyond

Benchmarking and Disclosure

Philadelphia Benchmarking and Disclosure

- Effects commercial buildings greater than 50,000 square feet
- EEB Hub will serve as:
 - Repository and analyst for the disclosed data
 - Education and outreach partner to commercial building owners
 - Advisor to leverage/recommend future energy efficiency programs

Utility Data Access Working Group

 Regional utility now implementing automatic Portfolio Manager data transfer

Retrofit Market Development

Hosting monthly outreach sessions for small businesses

- Inform them about opportunities in the AER marketplace
- Develop a working relationship with the EEB Hub -74 businesses participated

Launched Satellite Quorum

- Networking program for high growth companies in the AER marketplace
- Entrepreneurs meet with angel investors, subject matter experts, and industry leaders in the AER marketplace
- 95 businesses participated to date Launched the Hub Commercialization Center (HCC)
- Operating space and virtual services for companies in the AER marketplace.

Small Business Development Center

Buildings Energy Science Center

- Prototypical integrated advanced energy retrofit project
- Building functions as a living laboratory to showcase multiple energy saving technologies
- Three separate programmatic zones each with appropriate integrated mechanical systems
- Built-in monitoring and verification strategies for testing and energy efficiency research

Buildings Energy Education and Innovation Center

- Newly constructed training facility for building operators, energy auditors, and others
- Prototypical commercial building with capability for hands-on training and problem solving
- Mix of energy technologies and systems currently found in many commercial buildings, and more innovative approaches

Planned BTO/EEB Hub Coordination Matrix

Task	Subtask	Lead TM from BTO
TASK 1: Management		Richard Karney
TASK 2: Modeling and Simulation	Subtask 2.1: EEB Hub Design Advisor	Amir Roth
	Subtask 2.2: EEB Hub Energy Audit Tool	Joan Glickman
	Subtask 2.3: EEB Hub Retrofit Manager	Amir Roth
	Subtask 2.4: EEB Hub Simulation Tool Platform	Amir Roth
TASK 3: Building Energy Informatics	Subtask 3.1: Process and Information Standards	Amir Roth
	Subtask 3.2 Building Information Modeling (BIM) Datahub	Amir Roth
	Subtask 3.3: Building Energy Information Management	Elena Alschuler
	Subtask 3.4: Energy Information Visualization	Kristen Taddonio / Shalon Brown
TASK 4: Intelligent Building Operations		George Hernandez
TASK 5: Building Energy Systems	Subtask 5.1: HVAC and Envelope Integration	Karma Sawyer
	Subtask 5.2: Window and Lighting Integration	Karma Sawyer
	Subtask 5.3: Integrated Roof Replacements	Karma Sawyer
	Subtask 5.4: Indoor Environmental Quality	Eric Werling
TASK 6: Markets and Behavior	Subtask 6.1: AER Market Analysis	Kristen Taddonio
	Subtask 6.2: Codes and Standards	Jeremy Williams/ Kym Carey
	Subtask 6.3: Energy Utility Regulatory Policy	Elena Alschuler
	Subtask 6.4: Occupant Behavior and Decision Making	Shalon Brown
TASK 7: Education and Training	Subtask 7.1: Training Programs and Credentials	Benjamin Goldstein
	Subtask 7.2: Building Operator Training	Benjamin Goldstein/Shalon Brown
	Subtask 7.3: Educational Outreach	Shalon Brown
	Subtask 7.4: Building Energy Education Center	Benjamin Goldstein/Shalon Brown
TASK 8: Catalyzing the AER Sector		Kristen Taddonio/ Arah Schuur
TASK 9: Stakeholder Engagement		Richard Karney
TASK 10: Reporting		Richard Karney

Penn State

- Largest and most comprehensive energy degree programs in U.S. according to 2013 National Council for Science and the Environment survey
- Top university worldwide in multidisciplinary alternative energy research according to 2009 Elsevier Alternative Energy Research Leadership Study
- Ranked first in U.S. for college graduates best suited for the world of work in a 2010 survey of corporate recruiters by the Wall Street Journal
- Innovative new IP policies for industry sponsored research
- \$808 million sponsored research in FY 2012 (\$507 federal, \$110 industry)
 - \$297 Science and Engineering
 - \$183 Defense Units
 - \$146 Medicine and Health
 - \$103 Ag Sciences
 - \$79 Other

