Light Extraction Technologies in Organic Light Emitting Devices for Lighting Applications

Florian Pschenitzka Cambrios Technologies

Light Extraction Technologies

Outline

- Energy Losses in OLED
- External Outcoupling Technologies
- Internal Outcoupling Technologies
- Cathode Outcoupling Technologies

Optical Waveguides

light is being transported in a medium with high index of refraction due to total reflection at the interface
optical fiber

wave guiding is also present in OLED

- wave-guided mode in organic/ITO
- wave-guided mode in glass substrate

Iosses on cathode

- near-field interaction between the dipole and cathode (strong function of exciton-cathode distance)
- charge density oscillations (surface plasmon polaritons, SPP)

use of high-index substrate → high cost
no impact on organic/ITO mode
increase in outcoupling by 2x

source: Meerheim et al., Appl Phys Lett 97, p253305 (2010)

- outer surface of substrate modified to decrease substrate mode
- microlens array: 50% increase in outcoupled light

source: Möller et al., J Appl Phys 91, p3324 (2002)

brightness enhancement films (eg. 3M BEF 90/50)

source: Lin et al., Opt Comm 275, p464, (2007)

θ

Film

OLED

50

30

40

60

70

80

90

incorporating patterned grids

- Iow-index-grid on top of ITO layer
 - grid material: SiO₂ (n=1.5)
 - grid patterned by photolith
 - power efficiency was improved by 2.3x

- patterned ITO, use of conductive polymer
 - grid patterned by photolith, neg impact on sheet resistance
 - power efficiency was improved by 74%

source: Koh et al., Adv Mater, p1849 (2010)

incorporating randomly distributed scattering centers

source: Greiner at al., Proc SPIE 5214, p248 (2004)

simulated light propagation with scattering center
 Poynting vector shows energy direction, color shows intensity

n = 1.5

- ETL material induced scattering from cathode
 - evaporated material underneath the cathode
 - power efficiency was improved by 71%

Remark: SPP reduction due to cathode morphology?

- "buckles" underneath ITO and organic stack
 - PDMS stamp with "buckles" used to transfer features to UVcurable resin before ITO was sputtered onto this layer
 - power efficiency was improved by 80% ... 400%

Remark: SPP reduction due to cathode morphology?

- scattering layer between ITO and glass substrate
 - TiO₂ particles (size 400nm)
 - more than 100% improvement in efficiency
 - better color stability vs. angle

source: Chang et al., Journal SID 19/2, p196, (2011)

- elimination of the high-index ITO layer
 no significant efficiency increase, but freedom to develop new structures
 - process temperature to form effective network 140 °C
 - option of depositing conductive layer on top of other material

Cathode Outcoupling Technologies

Cathode Outcoupling Technologies

- surface plasmon polaritons
 - loss mechanism: coupling of exciton radiative energy in non-radiative surface plasmon
 - application of patterned surface to recover energy
 - resonant coupling with lumophore

source: An et al., Optics Express 8 (5), p 4041 (2010)

Cathode Outcoupling Technologies

Oji Paper

- use of microstructures on metal cathode
- no further details on device structure available
- reported gains of 100%

source: Oji Paper (link: www.oled-info.com/new-microfabrication-technology-can-enhance-oled-light-extraction-efficiency)

Pros & Cons

Technology	Pros	Cons
External Outcoupling	simple technology compared to internal light extraction layers	only substrate modes are being extracted
high-index glass	easy solution	high cost
microlens array		expensive patterning process
Brightness Enhancement Film	established technology, easy processing	quite costly
Internal Outcoupling	organic / ito mode is being extracted	more complicated due to impact on device structure
low-index grid	high impact on efficiency	SiO2 deposition and patterning layer
patterned ITO	no additional layers	requires ITO patterning, increases ITO sheet resistance
evaporated scattering layer		possible impact on device performance due to material system
buckles	high impact on efficiency	PDMS imprinting technology not scalable
scattering layer underneath ITO	high impact on efficiency	ITO deposition on top of scattering layer difficult
SSP harvesting		not mature technology yet, but very interesting

