FDD Applied to a Residential Split System Heat Pump

Building and Fire Research Laboratory HVAC&R Equipment Performance Group

W. Vance Payne

Minsung Kim, Seok Ho Yoon, Jin Min Cho, Piotr A. Domanski

NIST

National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce

Residential split-system heat pump

System Characteristics

- Refrigerant: R410A
- 2.5-ton split heat pump syste
- 13 SEER, 8.5 HSPF
- TXV in cooling and heating m odes
- Scroll compressor

ID unit (Indoor A-coil in upflow)

FDD in the heating mode

- Steady-State Detector (SSD)
- Polynomial Reference Model for important system features
- Fault Detector/Classifier

Cooling	Heating			
Under/Over Charge	Under/Over Charge			
Improper Airflow through HXs	Improper Airflow through HXs			
Liquid Line Restriction	Liquid Line Restriction			
Compressor/Reversing Valve Leakage	Compressor/Reversing Valve Leakage			
Non-condensables				

Fault-free reference model

- FDD scheme requires a reference fault-free value for features
- Real-time sampling of feature values requires a steady-state detector

Independent variables

 T_{OD} : outdoor or condenser air dry-bulb temperature T_{ID} : indoor or evaporator air dry-bulb temperature T_{IDP} : indoor or evaporator air dew-point temperature

Example: Second order multivariate reference polynomial

$$\phi_{i} = a_{0} + a_{1}T_{OD} + a_{2}T_{ID} + a_{3}T_{IDP} + a_{4}T_{OD}T_{ID} + a_{5}T_{ID}T_{IDP} + a_{6}T_{ID}T_{IDP} + a_{6}T_{ID}T_{ID} + a_{6}T_{ID}T$$

All measurements, including test conditions, have uncertainties.

Features and residuals

• Features: Characteristic measurements to detect and diagnose faults

- $T_{\rm ER}$: evaporator exit saturation temperature
- $\Delta T_{\rm sh}$: evaporator exit superheat
 - : compressor discharge wall temperature
 - : condenser inlet saturation temperature
 - : liquid line subcooling
 - : condenser air temperature rise
- $\Delta T_{\rm EA}$: evaporator air temperature drop
- $\Delta T_{\rm LL}$: liquid line temperature drop. \triangleright
- **Residuals:** difference in measurements and expectations
 - Expectations are estimated by no-fault reference model.

Residual,
$$\Delta \phi = \phi_{\text{Measurement}} - \phi_{\text{Reference}}$$

Fault implementation example

Improper outdoor air flow rate (Condenser fouling)

Reduction of air flow

i.e., obstructions stuck to HX, bent fins, fan fault

Fault Implementation:

Blocking the lower part of the outdoor HX.

Partially blocked condensing unit.

Residual pattern for a compressor/reversing valve fault

Probability of a fault

$$z_{i} = \frac{x_{i} - \mu_{i,\text{NF}}}{\sigma_{i}}$$

$$P(C_{\downarrow}, z_{i}) = P(z_{i} \ge s) = \frac{1}{2} \left[1 - \operatorname{erf} \left\{ \frac{1}{\sqrt{2}} (z_{i} + s) \right\} \right]$$

$$P(C_{\uparrow}, z_{i}) = P(z_{i} \le s) = \frac{1}{2} \left[1 + \operatorname{erf} \left\{ \frac{1}{\sqrt{2}} (z_{i} - s) \right\} \right]$$

$$\mathcal{E}_{i} \approx S\sigma_{i}$$

$$P(C_{-}, z_{i}) = P(-s < z_{i} < s) = \frac{1}{2} \left[\operatorname{erf} \left\{ \frac{1}{\sqrt{2}} (z_{i} + s) \right\} - \operatorname{erf} \left\{ \frac{1}{\sqrt{2}} (z_{i} - s) \right\} \right]$$

Cooling rule-based chart a, b, c

Fault Type	T _E	ΔT _{SH}	T _{CMP,D}	T _c	∆T _{sc}	ΔT_{CA}	ΔT_{EA}
Compressor fault	↑	-	_d	\leftarrow	\checkmark	\leftarrow	\checkmark
Condenser fouling	-	↑e	1	<	\checkmark	\rightarrow	\checkmark
Evaporator fouling	\checkmark	-	◆	\checkmark	-	\checkmark	$\mathbf{\uparrow}$
Liquid line restriction	\rightarrow	1	◆	←	1	\rightarrow	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$
Refrigerant overcharge	-	\rightarrow	<	←	1	-	-
Refrigerant undercharge	\rightarrow	4	<	\rightarrow	\checkmark	\rightarrow	\mathbf{A}
Non-condensable gases	-	-	1	1	$\mathbf{\uparrow}$	-	-
No fault	-	-	-	-	-	-	-

^a Residential split air conditioner with a constant speed scroll compressor and a TXV.

^b \uparrow , \downarrow , - represent the direction of positive, negative, and neutral residual respectively.

^c No change implies the variations within the uncertainty of measurement.

^{d,e} Cells colored by light blue and pink show inconsistent rules compared to the result of Che n and Braun (2001)

Heating rule-based chart

Fault Type	T _E	ΔT _{sh}	T _{CMP,D}	T _c	ΔT _{sc}	ΔT_{CA}	ΔT_{EA}
Compressor fault	- 个	-	-	\rightarrow	-	- 🗸	-
Condenser fouling	-	-	↑	- 个	-	\uparrow	-
Evaporator fouling	\checkmark	¥	^-↓	- 🗸	-	- 🗸	-
Liquid line restriction	-	-	-	-	-	-	-
Refrigerant overcharge	-	-	↑	$\mathbf{\uparrow}$	1	-	-
Refrigerant undercharge	- 🗸	-	-	- 🗸	\checkmark	- 🗸	-
No fault	-	-	-	-	-	-	-

Cooling/Heating rule-based chart comparison

Fault Type	Τ _Ε	$\Delta {\rm T}_{\rm SH}$	T _{CMP,D}	Т _с	$\Delta \mathbf{T_{sc}}$	$\Delta \mathbf{T}_{CA}$	$\Delta \mathbf{T}_{\mathrm{EA}}$
Compressor fault	↑ - ↑	-	-	\downarrow	↓ -	↓ -↓	→ -
Condenser fouling	-	↑ .	\uparrow	↑ - ↑	↑	\checkmark \uparrow	→ -
Evaporator fouling	\checkmark	-	$\uparrow \qquad \qquad$	↓ - ↓	-	↓ -↓	← -
Liquid line restriction	→ -	↑.	↑	↑	↑	↓ .	→ -
Refrigerant overcharge	-	→ -	\uparrow	\uparrow	\uparrow	-	-
Refrigerant undercharge	↓ -↓	↑	↑	↓ -↓	\downarrow	↓ -↓	≁ -
No fault	-	-	-	-	-	-	-

Fault classifier module

🔁 FDD Main Offline 02.vi _ 🗆 🗡 File Edit Operate Tools Browse Window Help 2 2 🔿 🕹 🔵 🗉 Fault Detection and Diagnostic System for Split Heat Pump Fault Classifier EER Degradation (%) -Minsung Kim, HVAC&R Equipment Performance Group 0.2--2.59318 -1.0 Papility 0.1 - 0.05 -Alarm Control (%) Moving Window Moving Avg -2 100.056 100.067 100.103 99.9717 100.018 100.043 Tcai EER Warning 0-1 69.9728 Teai 69.9515 69.9901 69.8903 69.9787 70.0535 1 1 1 1 1 CMF CF EF LL OC UC NC NF 50.445 Teai_dp 50.4155 50.4155 50.4647 50.4647 50.4647 Moving Avg Out Model Out Residual Standard Deviation Probability 42.4071 42.5109 42.5109 42.4849 42.5109 44.3176 0.370591 0 TE 42.4849 -1.8326712.7436 0.276176 0.819581 0 12.547 12.5324 12.5841 12.8253 12.6465 12.3703 dsh 181.404 1.8619 1.08599 0.156413 183.447 183.205 183.341 183.266 183.128 183.208 TD 117.577 118.065 -0.487064 0.232733 0 117.519 117.609 117.631 117.564 117.564 TC 6.91052 -0.409082 0.474247 3.81497E-31 6.50144 6.5358 6.59834 6.47791 6.39059 6.50457 dsc 14.8991 -0.305276 0.197122 0 14.5938 14.5799 DTca 14.5838 14.5209 14.6438 14.6408 17.881 2.22564 0.383406 2.33688E-29 20.1066 20.1359 20.133 20.021 20.1239 20.1193 DTea 5.92341E-28 EER Residual EER Stdev Model Out EER Moving Avg -0.271364 0.391699 10.4645 EER 10.2042 10.1869 10.1854 10.1788 10.2105 10.1932 NIST

Example of a FDD System with 15% loss in evaporator airflow

What more do we need?

- Commissioning tool using FDD module
- Learning module
 - System adjusts to every installation
 - System adjusts as it ages
- Heating mode unique problems
 - Refrigerant charging in heating mode
 - Frosting of the outdoor heat exchanger

What more do we need? (cont.)

- Standardized fault codes for residential systems
 - Everyone needs to define a fault in the same way
 - Standard fault codes simplify communicating faults to a central system
- FDD for variable speed systems and multifunction/hybrid systems
- FDD for mixed systems
- Standard method for comparing FDD devices/algorithms

List of FDD publications from BFRL

- 2009, "Heating Mode Performance Measurements for a Residential Heat Pump with Single Faults Imposed," NIST Technical Note 1648, National Institute of Standards and Technology, Gaithersburg, MD.
- 2009, "Performance of a Residential Heat Pump Operating in the Cooling Mode with Single Faults Imposed," Applied Thermal Engineering 29(4), 770-778.
- 2008, "Cooling Mode Fault Detection and Diagnosis Method for a Residential Heat Pump," NIST Special Publication 1087, National Institute of Standards and Technology, Gaithersburg, MD.
- 2008, "Design of a steady-state detector for fault detection and diagnosis of a residential air conditioner," International Journal of Refrigeration 31(5), 790-99.
- 2006, "Performance of a Residential Air Conditioner at Single-Fault and Multiple-Fault Conditions," NISTIR 7350, National Institute of Standards and Technology, Gaithersburg, MD.