

U.S. DEPARTMENT OF ENERGY Renewable Energy

There is a Need for Biobased Fuels

- Sustainably attain energy security Reduce reliance on limited and foreign petroleum resources
- Minimize carbon footprint, especially by lowering GHG emissions in the transportation sector
- Maintain America's technological competitiveness
- Create green jobs
- Commercial and military specs and < \$3/gal

Processes Under Development Make Dienes, Which are Potential Fuel and Product Precursors

LanzaTech, PNNL (Butadier	OH 		
Proprietary Biomass Gases Fermentation Process	Fuels and Chemicals	ÓH 2,3-Butanediol ↓	C8-Dimer
Syngas CO/H ₂		1,3-Butadiene	+ C12-Trimer
Gas-to-liquids http://www.lanzatech.co.nz/			ČC16-Tetr
Genencor, Goodyear (Isopre			
Genencor Genencor Renewable Genencor Genencor Genencor Goodyear Large-scale Isoprene	H C C H ₃ C C H ₃ Polymer-grade	Isoprene	C10-Dimer + + C15-Trimer
feedstock strain fermentation recovery and purification	BioIsoprene™ monomer		+
GENC-10053_Biolsoprene_Backgrounder_prt.pdf	f		C20-Tetram

Literature Survey On Oligomerization Of Isoprene

		(Trimer)						
#	Ligand	Productivity g/(g Cr)h	Total Trimer	Linear	Cyclic	Other		
1	$() P^{N_P} ())_2$	585	98	99	1	2		
2		669	86	87	13	14		
3	$ \underbrace{ \left\langle \begin{array}{c} \\ \end{array} \right\rangle}_{2} P^{-N} P - \left\langle \begin{array}{c} \\ \end{array} \right\rangle_{2} $	346	94	86	14	6		
4	$() P^{N_{P}} () P^{N_{P}} $	826	79	70	30	21		
5	i Pr $N_P - N_P$	298	95	74	26	5		
6		1483	65	87	13	35		
7	$() P^{N-N} P^{N-N} P_{2} $	1103	100	87	13	0		

This project has the potential to open new pathways to advanced biofuels by converting biochemically-derived dienes (butadiene and isoprene) to jet and diesel range hydrocarbons. This new pathway could help DOE and the nation meet EISA goals, reduce our dependence on foreign oil, and reduce green house gas emissions.

Homogeneous catalysts and their heterogenized analogs will be prepared to investigate steric and electronic effects in diene oligomerization to jet and diesel range hydrocarbons as fuel blendstocks.

Pacific Northwest National Laboratory Chemical and Biological Process Development Group Richland, WA 99352

Development of Catalyst Systems for the Selective Trimerization of Dienes Padmaja Gunda, Glen E Fryxell, Michael A Lilga