

Achieving Energy Security in Federal Facilities

Semin@RS

Instructors: Tony Mayfield, SRA International

FEMP Expert: Ab Ream,

Federal Energy Management Program

1 | FEMP First Thursday Seminars

femp.energy.gov/training

Agenda for Today

- Setting the Stage
- Introduction to Energy Security
- Developing a Site-Specific Energy Security Plan
- Conclusions

Core Competencies Addressed in this Seminar

Energy/Sustainability Managers, Facility Managers

- Building Systems
- Building Technologies
- Energy Analysis
- Industry Trends
- Energy Systems (DER, microgrid)

Operating Engineers/Building Technicians

Building Systems

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Results Expectations

Develop plans to maintain mission-critical activities in the event of disruption in energy systems and/or infrastructure

Energy Efficiency & Renewable Energy

Setting the Stage for Today's Presentation

5 | FEMP First Thursday Seminars

femp.energy.gov/training

Key Points

Purpose

 Educate federal employees about the basics and importance of energy security

What is the main issue to solve?

- Energy Security
- What is it?
- Why is it important?

- Reducing demand
- Challenges in Energy Security
- Technologies for Energy Security
- Assessing and reducing risk
- Developing a site-specific energy security plan
- Next steps...

Let's start with a little Quiz...

Ask yourself –

•If you lose power at your facility, how long can you run the operation?

•How many hours/days of backup operation can you handle?

ENERGY Energy Efficiency & Renewable Energy

North American Independent System Operators (ISOs)

There are 10 ISO/RTO's operating in North America

2 days

-

Relative Demand for Energy and Water Over Time 2 - 2 - 2 - 2 - 61200 1000 2 hours 800 **Relative Demand** 2 weeks 600 2 months 6 months 400 Water 200 Energy Developed by Brian Lally 0 0.5 Time (Days) 4 8 16 32 64 128

femp.energy.gov/training

10 | FEMP First Thursday Seminars

femp.energy.gov/training

Facilities Sandia National Define Lab Energy Threats Surety Micro-grid uses risk-based assessment for Energy System Assurance

ENERGY Energy Efficiency & Renewable Energy

Energy Assurance Equals

- Energy Efficiency (reducing energy consumption) +
- Load shedding of non-critical loads +
- Energy Reliability +
- Security +
- Sufficiency

Energy Security and Persistence

Continuing critical operations and how long they need/plan to persist

The longer the persistence the more water becomes a serious issue

It takes power to move water!

Continuing with our Quiz...

Ask yourself -

If you lose power at your facility, how long is the *"blink"* before backup power begins?

Thinking Site-Specific

- Each location, facility, campus, installation has different inputs to key variables
- Rubrics
- Energy Surety = Critical Loads (Local source of generation) and the time variable

ENERGY Energy Efficiency & Renewable Energy

Issues with Many Federal Facilities

- Major energy assets outside agency control
- Significant energy feeds from municipalities
- Water and sewer services outside the installation/base
- Fire and police protection are shared with local municipality
- Proximity to general population

Energy Efficiency & Renewable Energy

An Introduction to Energy Security for Federal Facilities

19 | FEMP First Thursday Seminars

femp.energy.gov/training

Definitions of Energy Security

- Standby measures that can be implemented in the event of a supply disruption
- The intersection between national security, economic security and environmental security along with the availability of energy resources and infrastructure to meet mission
- Resilient and redundant energy supplies that are accessible when needed

What Constitutes an Energy Security Related Event?

21 | FEMP First Thursday Seminars

Potential Threats to Energy Infrastructure

- Reliance on non-U.S. sources of oil
 - Related political instability of several energy producing countries
- Accidents and natural disasters
- Intentional Acts (cyber or physical)
 - Attacks on supply infrastructure
 - Attacks on supply water supply
 - Internal attack by disgruntled employee

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Critical Sources of Energy for Site

- Electricity
- Natural Gas
- Petroleum
- Renewables
- Nuclear
- Storage

Importance of Water in Energy Security

- Critical Energy supply to the water pumps
- The longer the power outage, the more water becomes the issue
 - Potable water
 - Waste and waste water
 - Local supplies

Water – Over Time

U.S. DEPARTMENT OF

ENERG

Energy Efficiency &

Renewable Energy

Electrical

- Most important energy system
- On-site and grid vulnerabilities
- Grids
- Power lines
- Power plants
- Substations
- Local distribution

Microgrids Can Integrate Grid Technologies

Microgrid - Interconnected loads and distributed energy resources within clearly defined electrical boundaries that acts as a single controllable entity

A microgrid can connect and disconnect from the grid to operate in both grid-connected or island-mode

Microgrid Exchange Group, October 2010

U.S. DEPARTMENT OF

Sandia National Lab

Energy Efficiency & Renewable Energy

Petroleum for Energy Production

- Refineries, pipelines, tank farms, transport
- Aviation fuel
- Fleet fuel
- Fuel oil (generators, etc.)

Natural Gas for Energy Production

- Vulnerabilities from production to distribution
- Transportation

Renewables

- Solar (PV)
- Solar Assist

 (solar-assisted water heating, etc.)
- Wind
- Geothermal

Continuing with our Quiz...

Ask yourself –

When was the last time you tested your back-up power system?

- Write down the date

Security

- Physical
- Cyber
 - Computer systems operate the infrastructure – energy, telecommunications, etc.
- People and Personnel
- Equipment

Key Issues for Any Strategy

Don't discount the simple stuff

- Storage
- Maintenance
- Parts
- Quality of equipment (especially the backup devices)

Energy Efficiency & Renewable Energy

femp.energy.gov/training

Operational Energy

- Operational energy key phrase defining DoD's concept and doctrine towards how the military uses energy
- Making planning and force development an important operational energy focus

ENERGY Energy Efficiency & Renewable Energy

Approaching an Energy Security Strategy

- Identify threats to your energy supply
- Ensure that energy supply is always available for critical functions
- Determine mission critical

Energy Security Strategy - Vulnerability

Geographically specific

- Electricity
- Natural gas
- Fuel oil
- Renewables
- Storage

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Approaching an Energy Security Strategy Risk

- Risk assessment-how to use it effectively
- Risk registers and mitigating risk
 - List all the risks
 - Response to each risk varies by the types of energy sources

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Risk / Vulnerability

An energy system that relies on a single fuel, transmission line, computer, or telecommunication system is inherently more vulnerable

Principles for Mitigating Risk

- Reduce demand

 this needs to be foremost in our thinking
- Redundancy
- Diversity
- Proper planning (and emergency management)
- Transfer
 - relying on local municipality for services and b/u, etc.

Demand Reduction

- The balance of supply and demand
- Energy demand by facility
- Capacity for demand side response
- Peak loads

Diversity

- Small-scale energy systems
- Multiple sources of energy

Continuing with our Quiz...

Ask yourself -

If you have renewables on-site, do you know if they will work without the grid?

Redundancy

- Grid-tied
- Fuel sources
- Fuel storage
- Transmission

Planning and Emergency Management

- Energy Security as part of overall emergency management plan
- Coordination within site and with federal, state, and local departments

Storage Issues

- Make the most of what you have
- What to store; how long, how much?
- Can the fuel be moved?
- Use fuel to get fuel
- Moving fuel can add risk to personnel
- Tanks with tanks to move fuel for tanks
- Cost of inventory
- Shelf life

Maintenance Issues

- Won't function when you need it
- Change from simple occasional use to constant/full use
 - Need more robust equipment

Parts

Parts inventory

- Enough
- Proper training of maintenance team
- Prepare for heavier use of equipment
- Getting parts to the need

Costs

- Storage
- More robust B/U equipment
- Logistics
- Getting parts to the need

Facility Energy Plan Requires Partnership

Work securely with your partners

- Utilities
 (electricity, gas, water, sewage, etc.)
- State and Local government
- FEMA
- Other emergency response

It is vital to include these partners in the discussion

Ask these questions

- How early?
- How much?
- How often?
- Can add variability and other issues/risks

Partnerships

- Using local agencies for fire, police, medical
- How much joint training with agencies?
- Who foots the bill?
- Changing our thinking
 - Bringing the local team into your trusted space/area
 - Making decisions in a critical situation – who?

How to Make Decisions

What level of support is needed to make a solid decision?

- Use existing metering and data
- Assessments and audits
- Tribal knowledge
 - Before they retire
- Upgrade the quality of B/U equipment (possibly longer run times)

Protecting Critical Processes

- Protecting critical processes
 - energy sources, water, computing, national security
- Processes over people sometimes
- What degree of protection?
- Force, separation, redundancy, etc.
- MORE open or MORE closed?
- What is the mission?

Consider Energy Security

- New construction
- Deep retrofits
- ESPCs and UESCs
- Enhanced Use Leases
- Equipment upgrades

Wrapping it up

- EACH SOLUTION IS LOCAL!!!
 - i.e., your solution is unique!
- Your site **needs** an assessment
 - Get outside perspectives
- Backup equipment...test, test, and retest
- Most important and immediate goal: *REDUCE DEMAND!*

Energy Efficiency & Renewable Energy

54 | FEMP First Thursday Seminars

femp.energy.gov/training

Resources

FEMP Website

Performing Energy Security Assessments – A How-To Guide for Federal Facility Managers

http://www1.eere.energy.gov/femp/program/energy_security.html

Contacts and Questions

Ab Ream

Federal Energy Management Program 202-586-7230 *ab.ream@ee.doe.gov*

Tony Mayfield

SRA International 865-389-6274 *tonymayfield@tonymayfield.com*