Federal Energy Management Program

Implementing New and Emerging Lighting Technologies

Instructors: Jeff McCullough, Pacific Northwest National Laboratory

Brian Liebel, The Lighting Partnership

FEMP Expert: Shawn Herrera, Federal Energy Management Program

Core Competencies Addressed in this Seminar

Energy/Sustainability Managers


- Industry Trends
- Building Technologies
- Improving Energy Efficiency

Facility Managers

- Industry Trends
- Building Technologies
- Managing Facility Projects

Operating Engineers/Building Technicians

- Lighting Systems
- Adjust/Replace Lighting

Results and Expectations

Implement lighting solution projects that increase energy efficiency in Federal facilities thereby reducing greenhouse gas emissions.

Results and Expectations

- 1. Select optimal lighting replacement projects based on quality baseline data
- 2. Review a number of potential lighting technologies and select the best solution for a particular application based on life-cycle costs, design and installation feasibility, and other factors
- 3. Determine how you will measure project results
- 4. Locate DOE and industry resources to support decision making processes.

Overview

- Solid State lighting for exterior applications
- Spectrally enhanced lighting
- Resources to support your decision making

Solid State Lighting for Exterior Applications

What is Solid State Lighting?

Sources of illumination other than electrical filaments, plasma, or gas

- inorganic semiconductor light emitting diodes (LEDs)
- organic light emitting diodes (OLED)
- polymer light emitting diodes (PLED)

FEMP Exterior SSL Technology Deployment

FEMP developing Federal-wide policy effort

- Example: a collaborative effort between FEMP and USACE to standardize SSL technology for exterior applications
 - Policy
 - Implementation plans
 - Training
 - Qualified Products List
 - Performance Specifications

Parking Structure Facts

- Approximately 110 million spaces
- Low/Medium Fixture Wattage
- Long Daily Operation
- High Energy Use
 - 28.1 TWh/yr
- Infrequent or low occupancy at times
- Daylight and controls potential

Light Source	Portion of Installed Equipment	Number of Lights (000s)
Incandescent	1.6%	600
Halogen	2.2%	800
Fluorescent	45.9%	16,600
Induction	7.4%	2,700
Mercury Vapor	0.1%	44
High Pressure Sodium	23.2%	8,500
Metal Halide	15.3%	5,600
LED	4.1%	1,500
Total	100%	36,400

FEMP First Thursday Seminars

Cost Type	Median Annual Cost per Space	Part of Total
Cashiering Salaries & Benefits	\$184.57	33%
Management Costs	\$57.69	10%
Security Costs	\$90.65	16%
Utilities	\$50.00	9%
Insurance	\$13.76	2%
Supplies	\$6.61	1%
Routine Maintenance	\$37.02	7%
Structural Maintenance	\$38.07	7%
Snow Removal	\$4.07	1%
Equipment Maintenance	\$6.07	1%
Other Expenses	\$75.43	13%
Total	\$564.03	100%

FEMP First Thursday Seminars

Unpainted concrete Embassy Suites, Portland, OR Source: PNNL

Ceiling & columns painted white Arizona State University, Tempe, AZ Source: PNNL

Parking Structure Controls

- Subterranean parking deck
- Directional flow traffic
- Parking for office building
- T12 → HPS → LED
- LED demo
- LED fixtures use occupancy sensors
- LED fixtures Next Generation Luminaire (NGL) winners

Department of Labor Headquarters Washington, D.C.

55% savings

- HPS draws 137 W
- LED draws 62 W (high state)

Illuminance

- Average down from HPS to LED
- Minimum up from HPS to LED

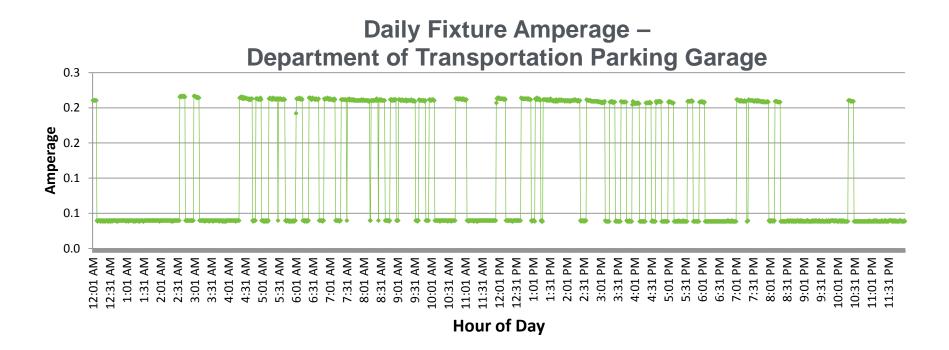
Department of Labor Headquarters, Washington, D.C.

LED and Controls!

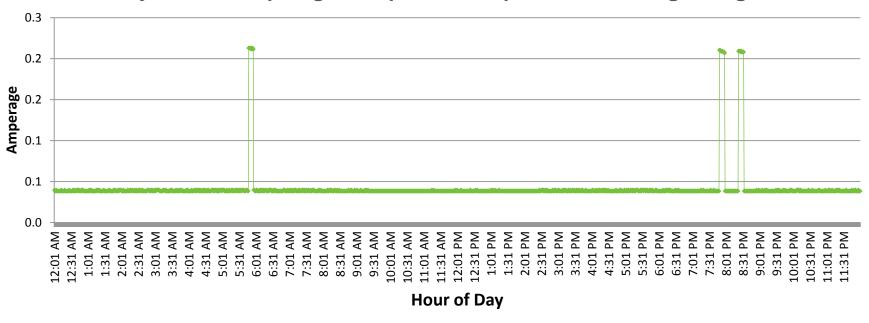
- Bi-level lighting appropriate for garage, parking lots, pedestrian areas
- Motion sensors to reduce lighting levels when not in use

Key Factors for Deployment

Metric	Federal Energy Savings	Cost Effectiveness	Probability of Success	Weighted Score
Weighting	50%	30%	20%	100%
Bi Level Garage / Parking Lot / Pedestrian Lighting Value	0.9	4.0	5.0	53


Army Planning Wide Spread Deployment

Army Exterior SSL Policy Announcement



Daily Fixture Amperage – Dept. of Transportation Parking Garage

Results

- Operating profile
 - Operating in high state≈30% of time
 - Operating in low state≈70% of time
- Time out of sensor affects savings
- One way traffic affects usage

LED on left / HPS on right Department of Labor Headquarters Washington, D.C.

Challenges

- Pipes and signs affect coverage
- Air handler caused "false positive"* for at least one luminaire
- Columns affect coverage
- Motion sensor triggered when no actual movement

Department of Labor Headquarters, Washington, D.C.

Specification Overview

Energy Conservation

0.18 W/sf

Background

- 1. EPAct 40% Parking Structure LPD: 0.18
- Parking Structures are covered by EPAct deduction

Internal Revenue Bulletin: 2008-14 Section 6.

Hotel, Cupertino, CA

http://www.irs.gov/irb/2008-14_IRB/ar12.html#d0e4216

Specification Area of Structure	Horizontal ¹ Illuminance Requirement	Vertical ² Illuminance Requirement	Uniformity Max:Min	Uniformity CV
Covered Parking Areas	1.25 (Min)	0.5	7:1	0.38
Ramps (Day)	2.00 (Min)	1.0	10:1	0.41
Ramps (Night)	1.00 (Min)	0.5	10:1	0.41
Vehicle Entry (Day) ³	50.00 (Min)	25.0	10:1	0.41
Vehicle Entry (Night)	1.25 (Min)	0.5	10:1	0.41
Uncovered (Top Deck)	0.75 (Min)	0.4	10:1	0.41

Specification: Technologies

Fluorescent

Induction

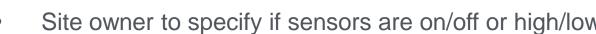
LED

Specification: Daylighting Controls

- Luminaires within 20' of perimeter and if wall is 40% open must be controlled with daylight harvesting
- Luminaires in vehicle exit/entry area turn off additional lighting at night

Photocell requirements

- a. 15 30 second time delay
- b. 10 fc set point for sensor
- c. Mounted in an unobscurred location
- d. Use relays that are UL 773 or UL 773 A

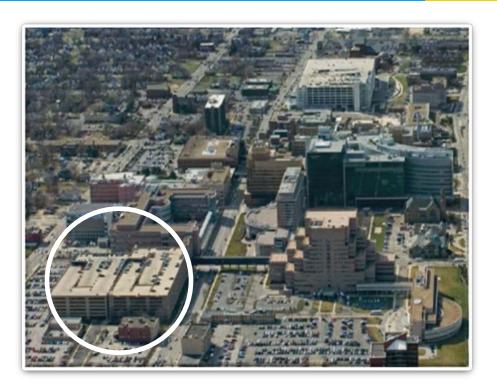


Electric lighting & daylight Hotel, Cupertino, CA

Specification: Occupancy Sensor Controls

- 1 occ sensor per luminaire, maximum coverage
- Sensors comply with WD 7-2000
- Sensor Type: Infrared or microwave
- Sensors not affected by ambient temperature
- Failsafe feature to fail "on" in event of sensor failure
- Site owner to specify if sensors are on/off or high/low

Control requirements may change



Parking Structures → **Low-hanging fruit**

- Large footprint, but low equipment density
- High tax incentive with low capital outlay

Natick Collection

Specification in Practice

Cleveland, Ohio

Cleveland Ohio, Hospital Highlights

- ≈1,000,000 sq feet
- 1,500 spaces
- Converted from HPS (top) to LED (bottom)
- 840 fixtures
 - 620 with occupancy sensors
 - 218 with daylight sensors
- Projected 82% energy savings
- Payback: 4.2 years simple payback

Specification in Practice: Washington, DC Metro

- 13,000 HPS luminaires
- 24-hour operation
- 24 parking structures
 - 303,000 1,130,000square feet
- Constructed between 1980 & 2011

• Offerors are requested to submit a design-build-maintain solution for replacing all HPS fixtures in accordance with the Commercial Building Energy Alliance (CBEA) High Performance Lighting Parking Structure Specification...

NREL Parking Garage

Computer rendering courtesy of

- 1800 parking spaces
- 1.13 MW PV Arrays
- Daylighting and Controls
- 77W LED Luminaires

Reference	LPD (W/s.f.)	Average Illuminance (foot candles)
NREL Parking Structure	≤ 0.05	≤ 1 fc
CBEA High Efficiency Parking Structure Lighting Specification	0.05-0.18	1-5 fc
ASHRAE 90.1 2007	0.18-0.3	≥ 5 fc

Selecting SSL Exterior Lighting Projects

Applications:

- Parking Lots/Areas
- Parking Garage
- Roadway
- Wall Packs
- Canopies
- Bollards

Benefits:

- Improved uniformity
- White light
- Long life/reduced maintenance costs
- Durability
- Digitally controllable

Evaluating Lighting Technologies

Requires site-specific evaluation:

- Paybacks range from 3 to 20 years
- Conduct life-cycle cost analysis
- Consider non-energy benefits as well

Things to look for:

- 5+ year warranty
- Ask for IES reports
 - LM-79
 - LM-80/TM-21
- Color appropriate for application
- Light distribution and glare

Measurement and Verification

- Wattage reduction calculation can be verified with spot-measurement.
 - For most projects 12 hour/day operation can be assumed
- Occupant/daylight control schemes require metering
- Illuminance readings taken at t₀ and at pre-defined intervals to track lumen maintenance.

See Gateway Reports:

www1.eere.energy.gov/buildings/ssl/gatewaydemos_results.html

FEMP Resources

- Street/Roadway lighting
- Parking Structure lighting
- General Resources
- Design Light Consortium
 - Qualifying Products List

Spectrally Enhanced Lighting (SEL)

What is Spectrally Enhanced Lighting (SEL)?

- Design method for interior lighting applications where visual acuity is important
- Not for outdoor lighting

SEL Ranked High for Technology Deployment

- Designs are simple lamp/ballast retrofits that result in 20-30% energy savings
- Requires no special controls or equipment
- Paybacks are typically
 - 3-4 years on T8 retrofits
 - 1 year for T12 retrofits

SEL Office Lighting Retrofit

Before

After

Washington DC Navy Office Building

Before

Orinda City Hall: New Construction

LEED Gold

Lamp Nomenclature

835 Lamp

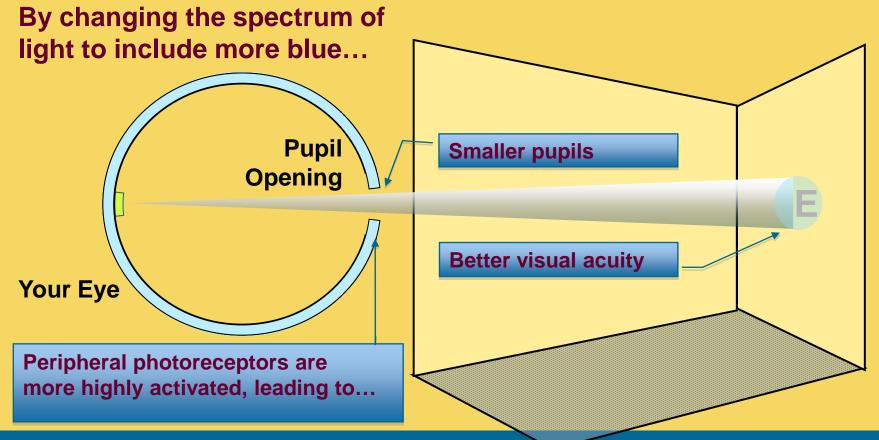
78-85 CRI

CRI: scale from 0-100: How well the lamp renders color 3500K
Correlated
Color
Temperature

CCT Scale

(6500-8000K)

(2700-3500K)



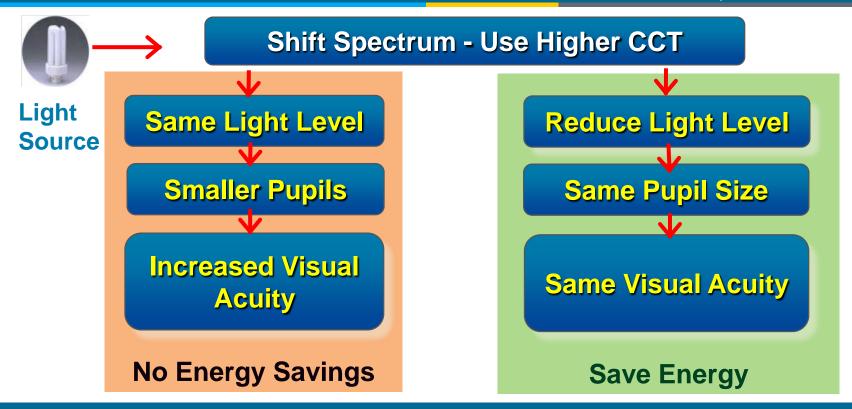
There's More to Light than What We Measure

Using higher CCT lamps with spectra more like daylight

- Makes eye's pupil smaller
- Improve visual acuity
- Affects Circadian Rhythm

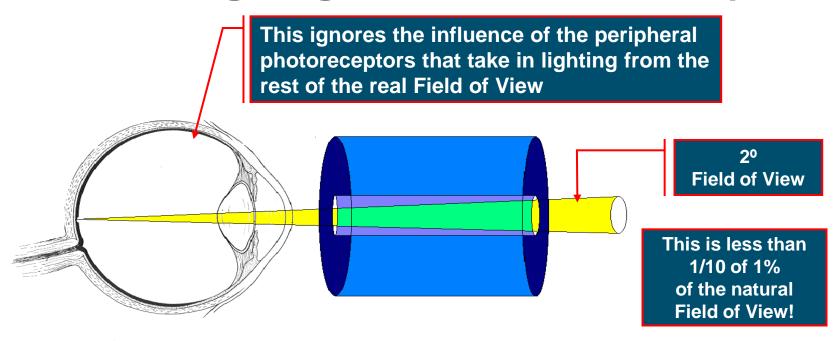
The Analogy: What Happens When...

we increase light levels?



we increase the color temperature (but not the light level)?

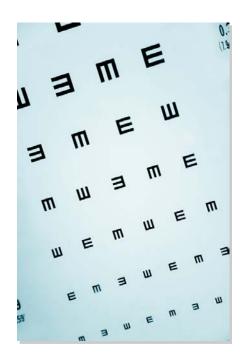
- Pupils get smaller
- Spaces seem brighter
- We see more clearly


IESNA Illuminance Levels

- Category D (P): 300 lx
 - High contrast, large size
- Category E (R): 500 lx
 - High contrast, small size
 - Low contrast, large size
- Category F (T): 1000 lx
 - Low contrast, small size

- IES recommendations are "Photopic" and do not consider spectrum
- What does this mean to lighting design?

Standard Lighting Measurement - Photopic



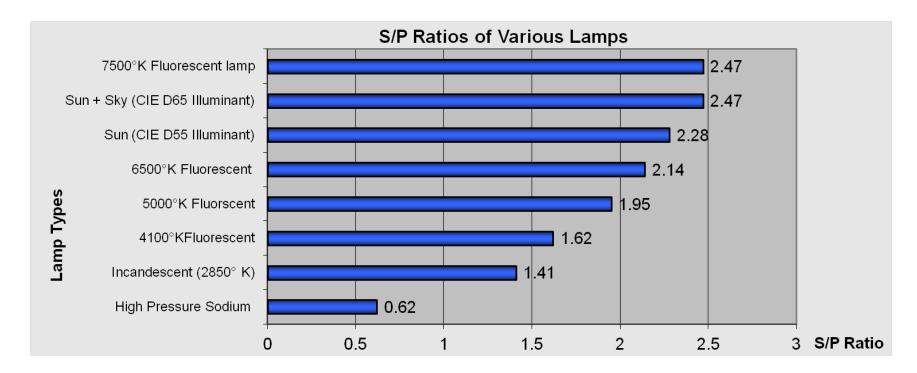
Science of SEL

When you have a full field of view:

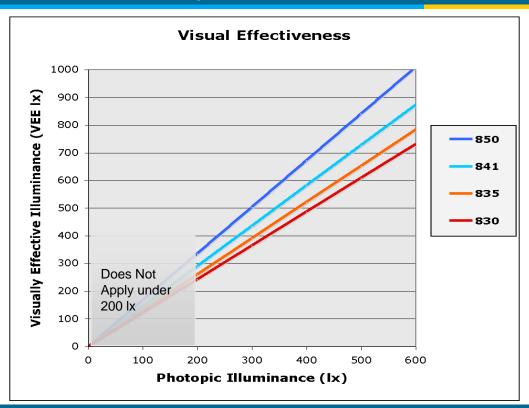
- Six separate vision studies from school children to older adults
- Spectrum affects visual acuity
- Higher CCT, better visual acuity

Science of SEL

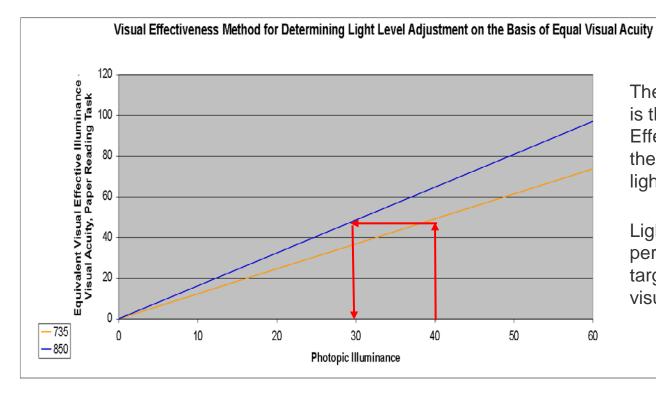
Increased visual acuity due to smaller pupil sizes, driven by recently discovered non-visual peripheral photoreceptors


Science of SEL

Empirically derived formulas using the S/P value account for the peripheral photoreceptor effect on visual acuity and are the basis of SEL


FEMP First Thursday Seminars

FEMP First Thursday Seminars



For visual acuity, visually effective illuminance (VEE) is

 $VEE = P \times (S/P)^{.78}$

FEMP First Thursday Seminars

The new photopic illuminance is the point where the Visual Effectiveness value intersects the VE/E slope of the new light source.

Lighting Calculations can be performed with this as the target illuminance - with equal visual acuity for paper tasks.

SEL Energy Savings from Retrofit Lamp Changes Only

Lamp	Mean Lumens (Catalog)	S/P Value	Equiv. Visual Efficacy	Energy Savings
F32T8 730	2650	1.19	3035	37%
F32T8 735	2650	1.3	3252	32%
F32T8 741	2650	1.56	3749	22%
F32T8 830 3 rd	2950	1.29	3598	25%
F32T8 835 3 rd	2950	1.41	3857	20%
F32T* 841 3 rd	2950	1.62	4298	11%

SEL Energy Savings Retrofits + New Ballasts

Lamp	Ballast Tech	EOL Lumen Maintenance	EOL Efficacy	Energy Savings
F32T8 730	SEIS	90%	82	44%
F32T8 735	SEIS	90%	88	40%
F32T8 741	SEIS	90%	101	30%
F32T8 830 3 rd	SEIS	92%	99	32%
F32T8 835 3 rd	SEIS	92%	106	27%
F32T* 841 3 rd	SEIS	92%	119	18%

Testing SEL in Real Applications

- 2001: 7 buildings; 300,000 sq. feet
 - Informal study, 850 lamps, No objections to color of lighting even with lowered light levels
- 2004: UCOP Study Occupant Acceptance
 - Compared 850 vs. 835; Occupant acceptance of 850 under lower light level

DOE Field Study: Economics Validation

- 3 buildings retrofit with 850 lamps & standard ballasts;
- Equal occupant satisfaction

Building A (735, T12)

Field Study (cont)

Similar Pre-Retrofit conditions

- Parabolic luminaries
- Mixed private and open offices
- Mixed daylit and non-daylit areas
- Over 100 full time workers

Differences

- Lamp color
- Lamp and ballast technology
- Energy savings potential

Building B (730, T8)

Building C (741, T8)

Field Study Findings

- Nearly 50% energy savings on T12 conversions
- 20% energy savings on T8 conversions
- No increase in task lighting usage
- No difference in occupant satisfaction

Results: Power Density of .5 Watts per Sq. Foot

Before

During

After

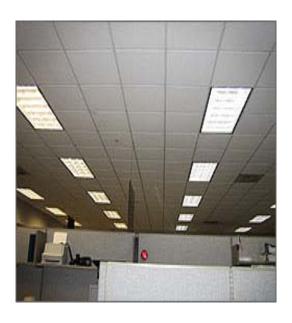
SEL 850 Lamp and SEL 5000K Lighting Adopted as Standard for Retrofits and New Construction

- Pacific Gas and Electric calls SEL one of their top 5 strategies for energy efficient lighting
- San Diego Unified School District
- Cities of San Diego and Oakland
- Counties of Napa and San Mateo

SEL Lighting in Federal Buildings

- Port Hueneme
- Washington Navy Yard
- Navy Techval Program
- US Forest Service

- Recent NARA project (2011)
 - surveyed building occupants
 in sample area and found high
 level of positive response
 - As a result, they successfully retrofit their entire building


Illuminating Engineering Society (IES)

- Resulting photopic light levels should meet IES minimum recommendations
- IES minimums for interior lighting are not specifically stated
- In general a 30% reduction from IES recommendations is considered a minimum light level

Spectrally Enhanced Lighting Summary

- More like daylight
- More energy efficient
- Easy to implement
- Cost effective for retrofits
- Immediate savings for new construction
- Okay to use as long as it meets
 IES minimum levels

Selecting SEL Lighting Projects

Applications:

- Offices
- Educational Facilities
- Medical Facilities
- Warehouses
- Correctional Facilities

Interior Lighting Retrofits:

- Any building with T12 fluorescent or HPS lighting
- T8 fluorescent systems that are 10 years old

Evaluating Lighting Technologies

If you have:

- Fluorescent T12 lamps, or T8 systems 10 years old
- High Pressure Sodium hibay/lowbay fixtures

Change to:

- T8 850 Lamps & Extra
 High Efficiency Ballasts
- Metal Halide or High CCT fluorescent fixtures

Measurement and Verification

- Calculations are generally done on a per-fixture basis: (watts per fixture) x (number of fixtures)
- Verification can be done by spot-checking individual fixtures, or by monitoring lighting panels

In Closing

DOE and FEMP Resources

FEMP Exterior SSL

http://www1.eere.energy.gov/femp/technologies/solid_state_lighting_
 html

SEL

- http://www1.eere.energy.gov/buildings/spectrally_enhanced.html
- http://www1.eere.energy.gov/femp/technologies/eut_spectral_lighting.html

FEMP Resources

FEMP Exterior SSL Initiative

www.femp.energy.gov/technologies/solid_state_lighting.html

Commercial Building Energy Alliance

www.buildings.energy.gov/alliances/parking structure spec.html

www.buildings.energy.gov/alliances/parking lot lighting.html

Municipal Solid-State Street Lighting Consortium

www.buildings.energy.gov/ssl/consortium.html

U.S. Department of Energy Solid-State Lighting www.ssl.energy.gov

Contacts and Questions

Shawn Herrera

Federal Energy Management Program

202.586.1511

shawn.herrera@ee.doe.gov

Brian Liebel

The Lighting Partnership

561.202.1993 x 1#

brian@thelightingpartnership.com

Jeff McCullough

Pacific Northwest National Laboratory

509.375.6317

Jeff.mccullough@pnnl.gov