HVAC - Maintenance and Technologies

Federal Utility Partnership Working Group Meeting

Outline

- Introduction to SCE's TTC
- Overview of energy challenges in California (CA)
- Role of HVAC in CA's energy and demand equations
- Factors affecting HVAC performance
 - Focus on SCE's research on maintenance faults
- Next generation of HVAC equipment
- HVAC technologies on SCE's TTC radar
- Black boxes do they all work?

SCE's Technology Test Centers

- SCE applied research facilities located in Irwindale, CA comprised of 3 test beds:
 - Refrigeration
 - HVAC
 - Lighting
- Coming Soon! A new ZNE lab

Refrigeration Testing

HVAC Testing

Lighting Testing

Future of Energy Efficiency in California

- Climate change initiatives are drivers
 - California Assembly Bill 32 (AB 32)
 - Greenhouse gas (GHG) be reduced to
 - 1990 levels by 2020
 - 80% below 1990 level by 2050
- DSM transition to IDSM and renewable generation
- By 2020 all new residential buildings and by 2030 all new construction commercial buildings must be Zero Net Energy (ZNE)
- HVAC systems to be tailored to California's hot and dry climate

California – A Leader in Energy Efficiency

Source: California Energy Commission (2007 Integrated Energy Policy Report, Page 3)

....but its still not enough.

ZNE -A Key Step To Achieve GHG Goals

California and HVAC Facts...

- Peak electric demand nearly ~50,000 MW and is increasing ~1-3.5% annually
- Air conditioning constitutes ~30% of CA's peak electric load
- Air conditioner compressor consumes the most power
- Compressor power consumption increases when the ambient temperature is high
- Overlooked maintenance accounts for ~ 10% of A/C energy use
- Refrigerant leakage from A/C units is equivalent to 8.8 million metric tons of CO₂ per year

Typical RTU Power Demand

(SCE's test data measured for ARI 115°F ambient test – average of six units)

Key Parameters Affecting HVAC Performance

- Ambient Conditions
- Maintenance
- Effectiveness of energy efficiency features

Effects of High Ambient Temp on EER

(SCE's test results)

- At high ambient temperatures:
 - Compressor power increases
 - Cooling capacity decreases

Effects of Overlooked Maintenance

(based on tests conducted at SCE's TTC)

Common HVAC Faults

- Dirty evaporator coils
- Dirty air filters
- Dirty condenser coils
- Improper refrigerant charges
- Malfunctioning economizers
- Incorrect fan settings
- Refrigerant line cloggage

Dirty Evaporator Coil Impact on Cooling Capacity

Cooling capacity was degraded by as much as ~40%

Dirty Evaporator Coil Impact on Power

- Compressor power was reduced by as much as ~7%
- Evaporator fan power was reduced by as much as ~40%
 - Supply CFM was reduced by ~75% due to evaporator cloggage

Dirty Evaporator Coil Impact on Efficiency and Supply Air Temperature

- EER was reduced by as much as ~35%
- Supply air temperature was increased by ~2°F

Dirty Air Filter Impact on Cooling Capacity

Cooling capacity was degraded by as much as ~30%

Dirty Air Filter Impact on Power

- Compressor power was reduced as much as ~4%
- Evaporator fan power was reduced by as much as ~35%
- Condenser fan power remained constant

Dirty Air Filter Impact on Efficiency and Supply Air Temperature

- EER was reduced by as much as ~20%
- SAT was increased ~0.5°F at the light condition, at grater levels of dirt this data determined to not be valid

Dirty Condenser Coil Impact on Cooling Capacity

- Cooling capacity was degraded by as much as ~40%
 - An increase of ~60% in discharge pressure caused a decrease in refrigeration effect of ~30%, impacting capacity

Dirty Condenser Coil Impact on Power

- Compressor power was increased by as much as ~70%
 - Compression ratio increased by ~60%
- Evaporator fan power remained constant
- Condenser fan was increased by as much as ~30%

Dirty Condenser Coil Impact on Efficiency and Supply Air Temperature

- EER was reduced by as much as ~60%
- Supply air temp increased by ~5°F

Improper Refrigerant Charge Impact on Cooling Capacity

- <u>Undercharged</u> cooling capacity was reduced by as much as ~20%
- Overcharged there was negligible impact on cooling capacity

Improper Refrigerant Charge Impact on Power

- <u>Undercharged</u> total unit power was *reduced* by as much as ~3%
- Overcharged total unit power was increased by as much as ~5%

Improper Refrigerant Charge Impact on Efficiency and Supply Air Temperature

- <u>Undercharged</u> reduced efficiency by ~20%, raised SAT by ~1°F
- Overcharged negligible impact on both efficiency and SAT

Next Generation of HVAC Technologies

Characteristics of Next Generation HVAC Equipment

- High efficiency at peak design and under part load
- Climatic region sensitive design
- Robust integration capabilities with:
 - Building energy systems,
 - Building automation
 - Smart meter/grid
- Intelligent and demand response ready
- Environmentally friendly refrigerants
- Compliant with indoor air quality and human comfort
- Reliable
- Cost effective

Next Generation of A/C Units Features

• Efficient

- Low temperature lift heat exchangers
- Compressor-less: indirect/direct cooling systems
- Desiccant dehumidification
- Variable speed fan and compressor: match capacity and load
- Efficient compressor and fan motors
- Precise metering device: electronic expansion valve (EXV)
- Hybrid Cooling: adiabatic + direct expansion (DX)
- Indirect or direct evaporatively cooled condensers
- Heat recovery

Next Generation of A/C Units Features (cont'd)

Intelligent

- 2-way connectivity
- Smart user interface and energy advisory
- On-board fault detection and diagnostic
- Direct digital control

Indoor Air Quality

Economizer integrated with Demand Controlled Ventilation

Low GWP Refrigerant

- Natural refrigerants
 - Hydrocarbons
 - CO2

Technologies on SCE's Radar Screen

On-Board Fault Detection and Diagnostics

- Detect failed:
 - Compressor
 - Evaporator and condenser fan motors
 - Evaporator fan belt
- Detect degradation/maintenance faults:
 - Dirty air filter
 - Dirty evaporator and condenser coils
 - Dirty refrigerant filter
 - Failed relief damper
 - Air in refrigeration loop
 - Restriction in refrigeration loop
- Detect economizer damper operation
- Detect air temperature differential across evaporator
- Detect low/high refrigerant charge levels
- Detect faulty and failed sensors

Advanced Direct Evaporative Cooler

- Residential and light commercial
 ~ 4 Ton
- Suitable for hot/dry climates
- Electronically commutated motor (ECM)
- Efficient centrifugal fan
- Long life ChillcelTM pads
- Automatic motor speed adjustment:
 - Accommodate different ducting systems and back pressures
- Electronic water quality management system:
 - Before impurities build-up inside the cooler, they are automatically detected and replaced with clean water
- Quiet operation

Advanced Indirect/Direct Evaporative Cooler

- Suitable for hot/dry climates
- > 40 SEER
- Counter-flow heat exchanger between:
 - Indirect: cool RA/hot OSA
 - Direct: Warm/dry OSA cools
 - ECM fan motors
- Compared to vapor compression A/C, a PIER Tech Brief says:
 - ~90% energy savings
 - ~80% demand savings

Evaporatively Cooled DX Split System

- Residential and light commercial
- Suitable for hot/dry climates
- High efficiency (EER = 14.5)
- ~ 40% downsized scroll compressor
- ECM condenser fan motor
- PSC indoor blower fan
- Operates at lower head pressures than a traditional air-cooled condenser
- Quiet operation
- SCE's Test Results-compared to an air-cooled unit, at 95°F (AHRI) showed:
 - Power reduction of ~50%
 - EER improvement of 3.5 Btu/hr/watts

Multi-Zone VRF A/C System

- Claimed system efficiency > 21 SEER
- One condensing unit can serve up to 16 zones
- Variable refrigerant flow zoning system
- Low fan energy
- Inverter controlled high efficiency blower fan
- Inverter controlled compressor optimizes part-load efficiency by matching capacity with cooling load
- Improved human comfort thru tight individual zone temperature control
- Conditions only the occupied spaces
- Zonal heat recovery
- Ducted or <u>ductless</u> indoor units
- Manage up to 2,000 indoor units from a single PC
- Energy recovery ventilators (ERV)
- Integration with building EMS

New Premium Efficiency Rooftop Units

- Energy Star & CEE Tier II qualified
 - Up to 17 SEER and 14.3 EER
- Multiple evenly sized high-efficiency scroll compressors
- Economizer
- Large heat exchanger
- VSD supply fan
- ECM fan motors

Hybrid Packaged Rooftop Unit

- Premium efficiency 5-ton packaged rooftop AC for residential/small commercial
- Up to 58% peak demand and 80% energy savings compared to 2010 DOE standards
- Winner of UC Davis Western Cooling Challenge
- Indirect evaporative cooling + DX cooling
- Evaporatively pre-cooled condenser
- ECM fan motors

CO₂ Heat Pump

- Refrigerant, CO_2 : GWP = 1; ODP = 0
- Dual stage intercooler (DSI) circuit
- High efficiency heat exchangers
- EXV
- Hi efficiency compressor
- Hi efficiency fan motors
- COP compared to R-22
 - Cooling: barely compatible
 - Heating: up to 14% higher

Radiant Cooling

- Uses chilled water as cooling fluid
- High EER
- No fan power/energy
- Higher energy and demand savings under low cooling load conditions
 - Cooling tower economizer mode with no chiller running

Not Every Black Box Works

Black Box 1 Annular Refrigerant Flow Device (ARFD)

What is it?

- A 2-way box between TXV and evaporator
- Installation and set up requires over hauling more than 10 areas of the unit first (e.g., superheat, over sized TXV, etc.)

Claims?

- Reduces energy usage by at least 15%
- Extends equipment life
- Reduces maintenance costs
- Maintains consistent temperatures

Black Box 1 – ARFD

How does it work?

• It enhances heat transfer efficiency by changing the quality of refrigerant in evaporator (close to all liquid phase)

Applications?

• Commercial refrigeration and air conditioning systems

Black Box 1 (ARFD) – Laboratory Test Results

- Baseline 5-ton RTU, SEER 14 and EER 12.5, nonadjustable TXV set to 10-15°F superheat
- With ARFD, EER of the unit was decreased for all AHRI test conditions

Black Box 2 – Refrigeration System Optimizer

What is it?

- An electrical device to optimize the compressor run time
- Installed on systems with **oversized** compressor capacity

Claim?

Reduces energy usage of oversized compressor by at least 10%

Black Box 2 (Refrigeration System Optimizer)

How does it work?

• It improves system performance by real-time "load-demand" analysis and control

Applications?

- Commercial refrigeration and air conditioning systems
- Residential refrigeration and air conditioning systems

Black Box 2 (Refrigeration System Optimizer) Preliminary Laboratory Test Results

• For all scenarios, maximum product temperature was below 40°F

Appendix

Dirty Evaporator Coil

CLEAN COIL

DIRTY COIL

Dirty Air Filter

CLEAN FILTER

DIRTY FILTER

Dirty Condenser Coil

CLEAN COIL

Blocking Material

DIRTY COIL

Improper Refrigerant Charge

Nanofluids

- Nanofluids: new class of advanced heat-transfer fluids engineered to disperse nanoparticles smaller than 100 nm (nanometer) in conventional refrigerants
 - Improve heat transfer effectiveness of evaporator and condenser coils
 - No cloggage due to extremely small nano structure
- Technology still in the fundamental research stage

