

DOE's EGS Program Review Using CO_2 as Working Fluid in EGS to Combine Energy Extraction with Sequestration of Carbon

Karsten Pruess

Lawrence Berkeley National Laboratory Phone (510)486-6732 Fax (510)486-5686 K Pruess@lbl.gov

July 18, 2006

Project Objective

Evaluate the feasibility of using CO_2 as heat transmission fluid for EGS, and compare with "conventional" waterbased systems. Assess the potential for combining energy extraction with sequestration of CO_2 .

<u>Change:</u> CO_2 -based EGS represents a new initiative in our project on "Geothermal Reservoir Dynamics." This has grown to a major priority in our FY06 work that had not been anticipated in earlier planning.

July 18, 2006

Challenges and Opportunities for EGS

- Water is a powerful solvent for many rock minerals, making it very difficult to achieve long-term stable operation of water-based EGS systems.
- Inevitable water losses may seriously impede the viability of EGS in water-short regions, such as the Western U.S.
- Using CO₂ as heat transmission fluid may avoid the chemistry problems of water-based systems, may offer competitive or superior performance as a working fluid for heat extraction, and may allow to achieve CO₂ sequestration as an ancillary benefit.
- Operating EGS with CO₂ offers a game-changing alternative, with large potential for superior performance and improved economics.

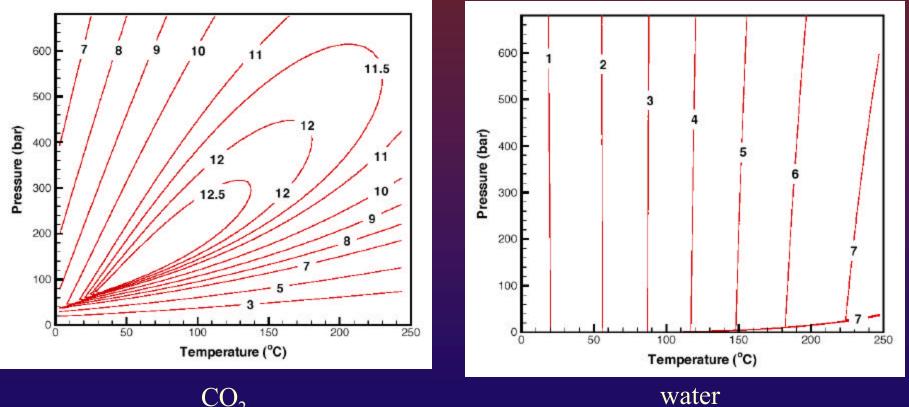
July 18, 2006

Background/Approach

- The concept of using CO₂ as working fluid for EGS was originally proposed by Donald Brown (2000), but has received little attention in the technical community.
- * Our modeling capabilities have matured to the point where we could begin a serious quantitative evaluation of the relative merits of water and CO_2 as heat transmission fluids for EGS.
- LBNL staff active in geothermal research has leveraged their strong engagement in studies of CO₂ storage in geologic formations.
- Initial studies showed such enormous promise for CO₂ that much of our EGS effort planned for FY06 was redirected towards EGS-CO₂.

July 18, 2006

Results/Accomplishments

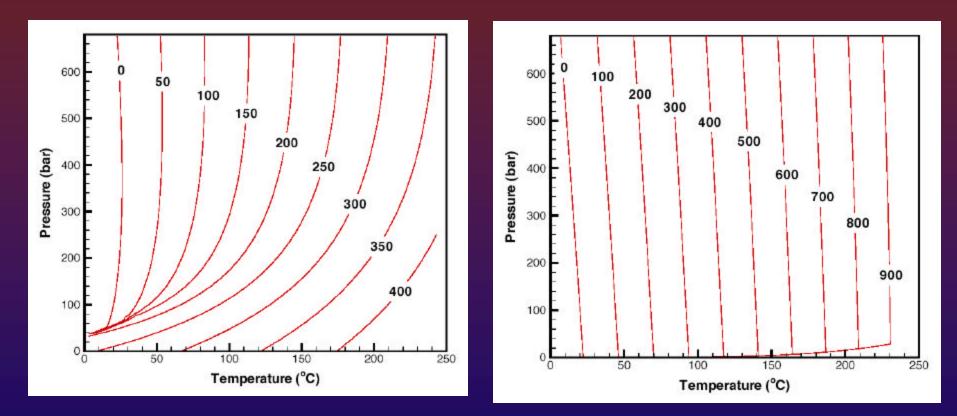

- Presented a first paper on our findings at the Stanford 2006 geothermal workshop.
- Assisted DOE in developing a White Paper to support the case for an EGS-CO₂ R&D programme.
- Submitted a paper with detailed reservoir engineering analyses of CO₂-based EGS to *Geothermics*.
- Submitted an abstract on EGS-CO₂ to the GSA Annual Meeting (Philadelphia, October 2006).

CO₂ and Water Compared as Heat Transmission Fluids for EGS

property	CO ₂	water
ease of flow	lower viscosity, lower density	higher viscosity, higher density
heat transmission	smaller specific heat	larger specific heat
fluid circulation in wellbores	highly compressible and larger expansivity ==> more buoyancy	low compressibility, modest expansivity ==> less buoyancy
fluid losses	earn credits for storing greenhouse gases	costly
chemistry	poor solvent; significant upside potential for porosity enhancement and reservoir growth	powerful solvent for rock minerals: lots of potential for dissolution and precipitation

July 18, 2006

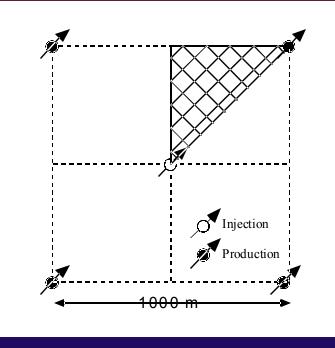
Ratio of Fluid Density to Viscosity (10^6 sm^{-2})



 CO_2

July 18, 2006

Specific Enthalpy (kJ/kg)

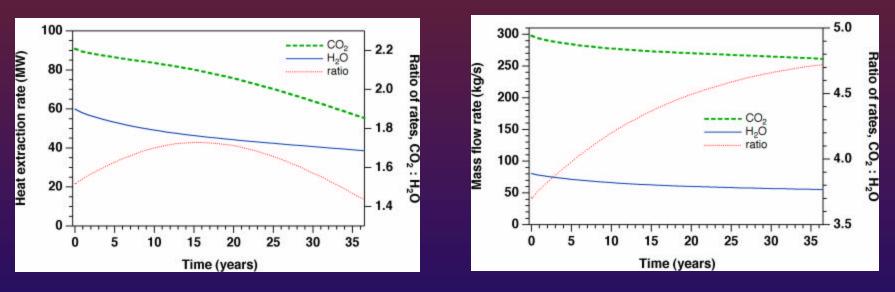


 CO_2

July 18, 2006

Marriott Hotel Golden, CO water

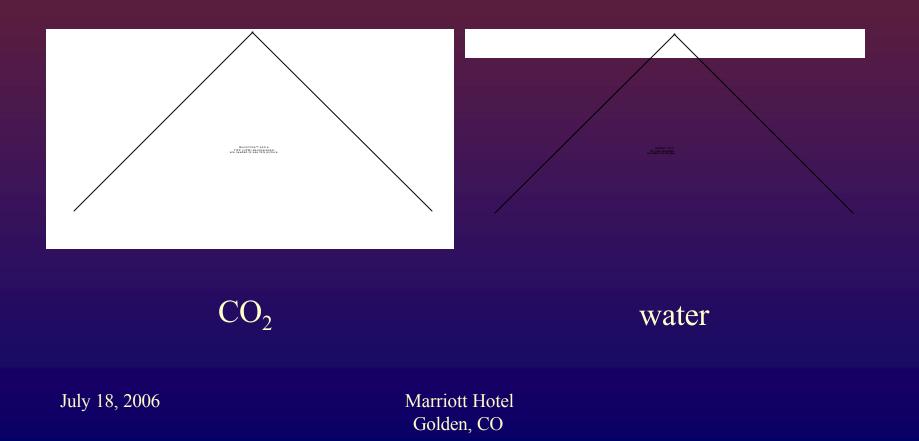
Five-Spot Well Pattern for Heat Extraction Studies



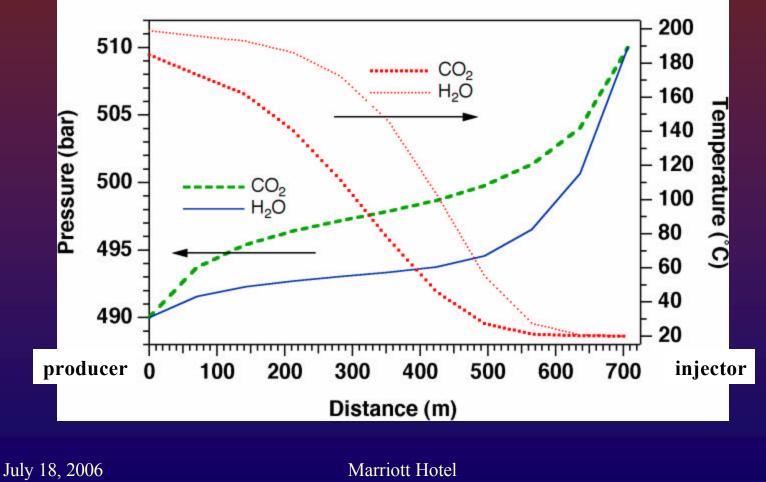
Formation		
thickness	305 m	
fracture spacing	<u>50 m</u>	
permeable volume fraction	2%	
permeability	50.0x10 ⁻¹⁵ m ²	
porosity in permeable domain*	50%	
rock grain density	2650 kg/m ³	
rock specific heat	1000 J/kg/ fC	
rock thermal conductivity	2.1 W/m/ JC	
Initial Conditions		
reservoir fluid	all CO ₂ , or all water	
temperature	200 JC	
pressure	500 bar	
Production/Injection		
pattern area	1 km ²	
injector-producer distance	707.1 m	
injection temperature	20 JC	
injection pressure (downhole)	510 bar	
production pressure (downhole)	490 bar	

July 18, 2006

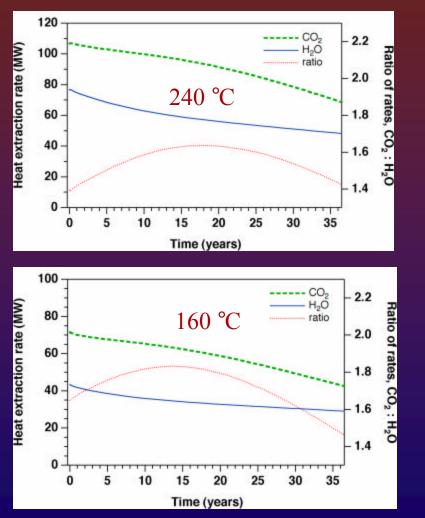
Results for Reference Case $T_{res} = 200 \text{ °C}, P_{res} = 500 \text{ bar}, T_{inj} = 20 \text{ °C}$

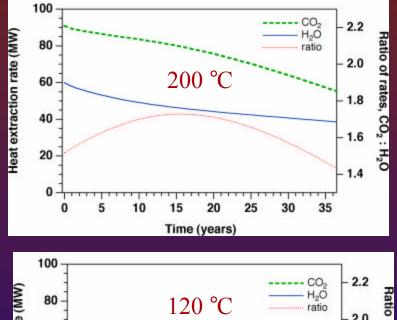


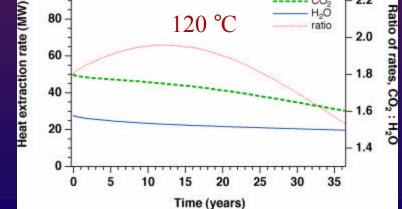
Heat extraction rate


Mass flow rate

Reference Case - Temperatures after 25 Years $T_{res} = 200$ °C, $P_{res} = 500$ bar, $T_{inj} = 20$ °C

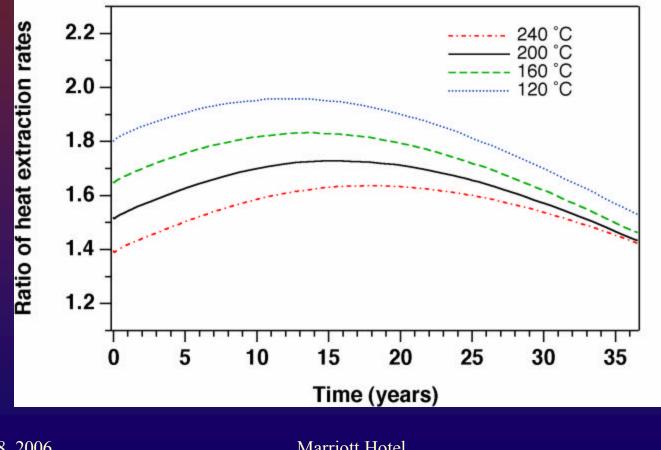



Reference Case after 25 Years Profiles along a Line from Producer to Injector



Golden, CO

Different Reservoir Temperatures

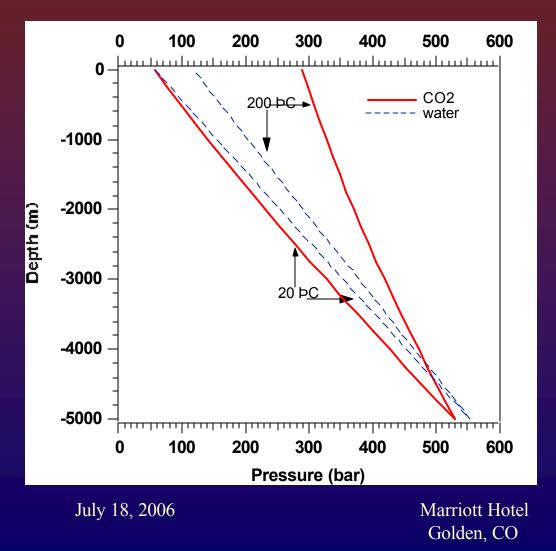


July 18, 2006


Marriott Hotel Golden, CO

CO₂ vs. Water Heat Extraction Rates Different Reservoir Temperatures

July 18, 2006


CO₂ vs. Water Heat Extraction Rates Dependence on Injection Temperature and Reservoir Pressure

July 18, 2006

Wellbore Flow: CO₂ vs. Water

 $? P = P_{prod} - P_{inj}$ CO₂: 288.1 - 57.4 = 230.7 bar Water: 118.6 - 57.4 = 61.2 bar

CO₂ Storage Capacity

- Mathematical modeling suggests that a CO₂ mass flow of approximately 20 kg/s is required per MW electric power capacity.
- From experience with long-term circulation tests with water-based systems, expect a fluid loss rate of order 5%, or 1 kg/s of CO₂ per MW electric power.
- For 1,000 MWe of installed EGS capacity, the amount of fluid lost in circulation and stored underground is estimated as 1 tonne of CO₂ per second.
- This rate of fluid storage is equivalent to CO₂ emissions from 3,000 MWe of coal-fired power generation.
- CO₂ inventory in 1,000 MWe of installed EGS capacity is estimated as 137 Mt.

Summary of Results

- Thermophysical properties make CO_2 an attractive fluid for heat extraction.
- Heat extraction rates when using CO₂ are estimated to be approximately 50 % larger than for water.
- Larger buoyancy forces compared to water mean reduced power requirements for the fluid circulation system.
- Chemical interactions between rocks and fluids would be weaker and are likely to be more favorable for CO₂ than for water.
- Unavoidable fluid losses are costly for water, but could earn greenhouse gas storage credits when using CO₂. The sequestration potential for EGS-CO₂ is large.
- It may be possible to feed CO₂ directly to the turbines, obviating the need for a heat exchanger and secondary fluid circulation.

Conclusion

Will the project objective be achieved by the project completion date?

- Yes –initial demonstration of attractive properties of CO₂ as heat transmission fluid has already been achieved.
- No project is just getting started, no completion date has been set.