

Geothermal Technologies Program Research and Development July 17, 2012

Hidda Thorsteinsson
Geothermal Technologies Program
Office of Energy Efficiency and Renewable Energy
U.S. Department of Energy

Geothermal Technologies Program Mission

Vision: Geothermal will be a major contributor to the nation's baseload energy supply

Accelerate Near Term Hydrothermal Growth

- Decrease exploration risks and costs.
- Lower cost of electricity to 6 cents/kWh by 2020.
- Development of 30 GWe of undiscovered resources.

<u>Secure the Future with Enhanced Geothermal</u> <u>Systems (EGS)</u>

- Demonstrate that EGS is technically feasible by 2020.
- Lower EGS cost of electricity to 9 cents/ kWh by 2020 and 6 cents/kWh by 2030.
- Accelerate the development of 100 GWe by 2050 (MIT).

Enhanced Geothermal

- Blind Systems
- Develop an inventory of new prospects.
- Reduce subsurface uncertainty.

In existing hydrothermal fields

- Margins of existing hydrotherma fields
- "Green Field" development

Identified Hydrothermal

*Lower exploration cost and risk to accelerate development

Technical Risk Profiles EGS and Hydrothermal

Hydrothermal:

EGS:

Using innovative technologies to find hot rock with fluid and permeability

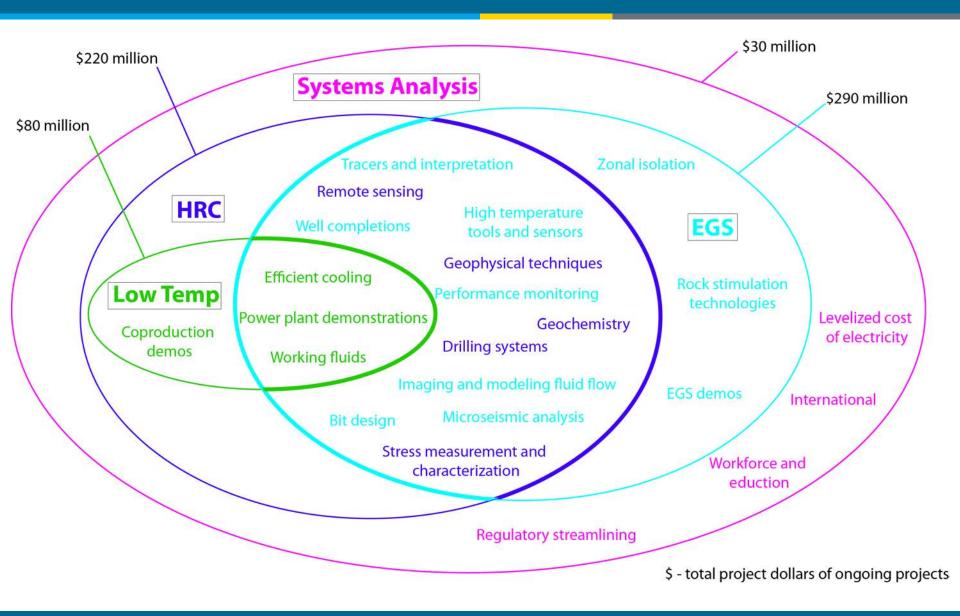
- Discover and characterize "blind" hydrothermal systems
- Drill and log wells—temperature, fluid volumes, rock properties
- Reservoir sustainability
- Power conversion

Path Forward:

 Reduce risk through RD&D portfolio and identification of new geothermal prospects

Develop and validate technologies to characterize and create subsurface heat exchange systems

- Drill and log well(s) to characterize rock parameters, stress regime, initial injectivity, temperature, pressure, etc.
- Perform multi-well injection and assess long-term production
- Develop well field and scale- up reservoir


Path Forward:

 Remaining gaps are the foundation of the EGS portfolio

Subprograms RD&D Interactions

Most research cuts across areas

Hydrothermal

Exploration and Power Conversion Technologies

20 validation of innovative exploration techn. projects

 Aim to confirm 400 MW of new hydrothermal resources by 2014

27 R&D projects to increase exploration success and advance power conversion

- Advanced geophysical surveys and processing
- New geochemical signals and improved analysis
- Innovative drilling systems
- Advanced working fluids and more efficient cooling

17 power production demonstration projects

 Providing lessons learned and preliminary cost data for low temperature and coproduction

What's Ahead in 2013

Continued RD&D to lower exploration risk and development costs

- Phase II funding for successful RD&D projects that accomplish technical milestones
- Coproduction demonstration in commercial field

Regional Data Gathering and Analysis to identify new opportunities

Target: Lower hydrothermal LCOE to 6 cents/kWh by 2020

Enhanced Geothermal Systems RD&D Targeting Critical Gaps

Six EGS demonstrations

 To validate reservoir creation in different geologic conditions

110 R&D projects related to

- Fracture characterization
- Coupled modeling
- High temperature tools and sensors
- Advanced drilling and well completion technologies
- Zonal isolation, etc.

What's Ahead in 2013

EGS field test sites effort initiated

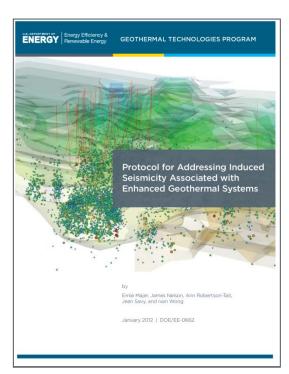
- Multi-user pre-competitive R&D environment for EGS testing and validation
- Up to three geologically unique sites

Targets: Demonstrate technical feasibility of EGS at commercial scale by 2020 and lower LCOE to 6 cents/kWh by 2030

Enhanced Geothermal Systems *Demonstrations*

Performer	Project Site	Site Information	Stimulation Timeline	Funding
Ormat Technologies Inc.	Desert Peak, NV	Adjacent to existing hydrothermal sites	Multiple phase stimulation completed	\$ 4.3 M
Geysers Power Company, LLC	The Geysers, CA	Two existing wells will be reopened and deepened for injection and stimulation	Currently stimulating	\$ 6.2 M
Ormat Technologies Inc.	Bradys Hot Springs, NV	Improve the performance of the existing geothermal field	Initiating in late FY12	\$ 3.4 M
AltaRock Energy Inc.	Newberry Volcano, OR	High potential in an area without existing geothermal development	Initiating in late FY12	\$ 21.4 M
University of Utah	Raft River, ID	Improve the performance of the existing Raft River geothermal field	Initiating in early FY13	\$ 8.9 M
NakNek Electric Association	NakNek, AK	Located in remote location in Alaska without existing geothermal development	Project on Hold	\$ 12.4 M

Systems Analysis Provides Key Insights and Analysis

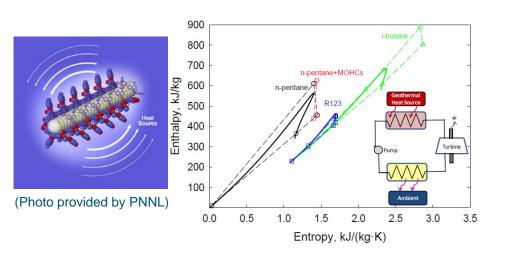


Systems Analysis assesses geothermal resources, cost drivers, barriers, the impact of policy, and progress toward goals.

- Regulatory Roadmap Initiative
- National Geothermal Data System design, testing and population
- EGS field test site planning, analysis and initial scoping
- Extensive techno-economic modeling

What's Ahead in 2013

- Techno-economic, environmental and financial analysis
- Geothermal data provision
- Intergovernmental and international coordination



New U.S. based Protocol 2012

Surface Technologies

Innovative Projects and Accomplishments

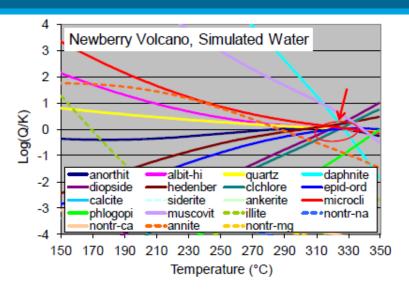
Objective: Improve ORC efficiency through working fluid additives

Successes:

- Metal organic heat carriers identified and tested for better thermal conductivity and improved heat transfer coefficient.
- Economic modeling indicate less than 100 days payback period when used with R123.

Mineral Extraction from Geothermal Brines
Organization: Simbol Materials

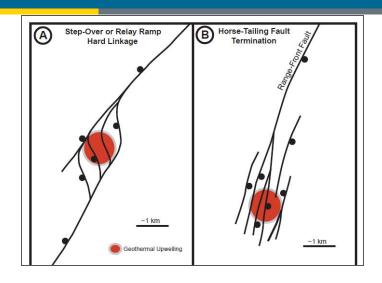
<u>Objective:</u> Validate improved Li extraction technologies and develop technology to cost-effectively extract strategic materials from geothermal brines


Success:

- Li extraction demo plant operational for 1500 hours+, 95% Li extraction achieved.
- Producing electrochemical grade lithium carbonate of >99.5% purity.

Exploration Technologies

Innovative Projects and Accomplishments


An Integrated Chemical Geothermometry System for Geothermal Exploration

Organization: LBNL

<u>Objective:</u> Develop a practical and reliable system to predict reservoir temps from integrated analyses of spring and well fluids

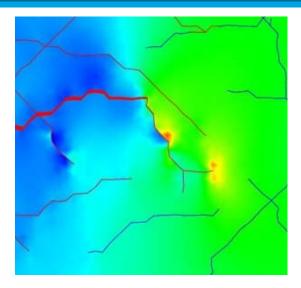
Accomplishments:

 Practical software tool (GeoT) developed to automate multicomponent geothermometry method.

Characterizing Structural Controls of EGS and Conventional Resources in the Great Basin

Organization: University of Nevada, Reno

<u>Objective:</u> Characterize structural settings favorable for geothermal activity and conceptual structural models that can facilitate exploration


Success:

- Defined a spectrum of favorable structural settings for geothermal systems.
- Preliminary catalogue of structural settings for Great Basin systems completed.

Reservoir/Seismicity Modeling

Innovative Projects and Accomplishments

Predicting Stimulation Response Relationships for Engineered Geothermal Reservoirs

Organization: LLNL

<u>Objective:</u> Develop a computational test bed to produce realistic models of EGS stimulation-response scenarios.

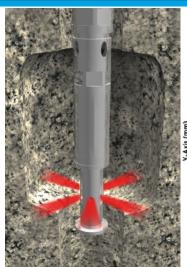
Accomplishment:

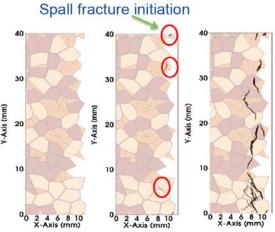
- Modeled a 10% enhancement in a stimulated fracture network;
- Developed model of hydro-fracture allowing interaction with pre-existing fracture network.

Induced Seismicity Protocol and Best Practices
Organization: LBNL

<u>Objective:</u> General guide for geothermal developer to address induced seismicity issues.

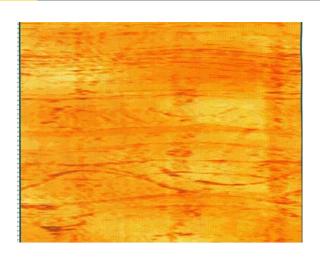
Accomplishment:


- 2011 Updated Induced Seismicity Protocol: ALL DOE funded EGS projects are required to adhere to the protocol
- 2012 Best Practices Document


11

Drilling and Reservoir Characterization

Innovative Projects and Accomplishments



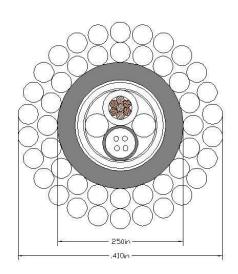
<u>Objective:</u> Development of a continuous drilling and underreamer based on thermal spallation

Successes:

- Continuous steam jet downhole at 900C, with no downhole ignition source.
- Ability to bring cuttings to the surface
- Test results suggests ROP up to 15-20'/h; pathway to 30'/h

Geothermal Ultrasonic Fracture Imager
Organization: Baker Hughes

<u>Objective:</u> Development of a downhole wireline tool to characterize fractures in wells up to 300°C and depths up to 10,000 m


Successes:

- Transducer 300°C demonstration test completed.
- 25KPsi/260°C test of Tool Transducer Assembly Completed Jan 2012

Downhole Tools: Fiber Optics

Innovative Projects and Accomplishments

Current cable design per TA – 121511

- Uses 1 conductor with the tube/armor as the return
- All polymeric material is DuPont Ecctreme polymer
- Metal tube wall thickness is currently 0.035", this could be reduced to 0.028 if larger conductor is needed.

Copper/Fiber Cable for Geothermal Well Monitoring
Organization: Draka Cableteq USA/Prysmian

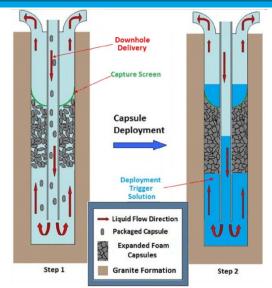
<u>Objective:</u> Develop a cable/sensor for high temp geothermal wells (>250°C) via an optical fiber with better resistance to hydrogen darkening and longer life.

Success:

- Downselected 300°C coatings and completed H₂ testing.
- Developed Prototype cable that will be tested at EGS demonstration site

Imaging Fluid Flow in Geothermal Wells Using
Distributed Thermal Perturbation Sensing
Organization: LBNL

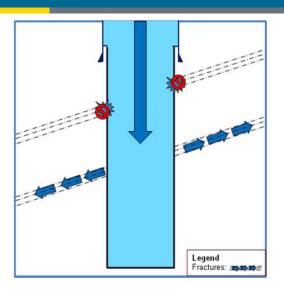
<u>Objective:</u> Develop a new flow imaging tool -Distributed Thermal Perturbation Sensor, which consists of a fiber-optic DTS and a heat trace cable installed along the axis of a borehole.


Success:

Successfully deployed DTS tool at EGS demonstration site in Idaho.

Downhole Tools: Zonal Isolation

Innovative Projects and Accomplishments


HT/HP Devices for Zonal Isolation in Geothermal Wells
Organization: CTD Inc.

<u>Objective:</u> Seal off unwanted flow regions in high-temperature (>200°C) using both physical and chemical diverters.

 Will facilitate mini-fracs, elimination of fluid loss zones etc

Accomplishment:

 Component parts of the zonal isolation concept have been tested successfully- system assembly is the next step.

Chemical Diverters

Orgnaization: AltaRock Energy, CSI Technologies

<u>Objective:</u> Facilitate multi stage fracturing using chemical diverters in >200°C environments to increase power production per well.

Accomplishment:

- Two successful field tests in high temperature reservoirs
- Transmissivity calculations post testing imply the material fully degraded.

Geothermal Technologies Program

Questions?