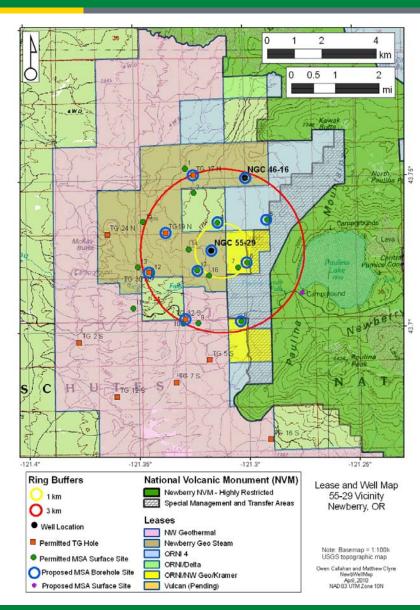


Newberry Volcano EGS Demonstration

May 19, 2010

Susan Petty **AltaRock Energy, Inc**

EGS Demonstration Projects


This presentation does not contain any proprietary confidential, or otherwise restricted information.

Project Location

- Northwest flank of Newberry Volcano, Deschutes Co, OR
- Geothermal leases held by Davenport Newberry LLC

Project Overview

Timeline

- Phase I May 2010 to Feb 2011
- Phase II Feb 2011 to Nov 2012
- Phase III Nov 2012 to May 2013
- o 1% complete

Budget

- Total project funding \$43.8m
- o DOE share \$21.4m
- Awardee share \$22.4m
- Funding for FY10 \$ 4.1m

Barriers

- Institutional
 - Drilling cost minor grant share for new wells, no share for existing wells
 - Permitting lack of EGS/induced seismicity policy, minimal support against opposition

Technical

 Many of the <u>technical</u> EGS development barriers cited in the Multi-Year Plan will be encountered and/or addressed (e.g. B, C, D, E, F, G, H, I, J, L, M, P)

Partners

- Davenport Newberry LLC
 Doug Perry
 Todd Jaffe
- Temple UniversityNick Devatzes
- U.S. Geological Survey
 Steve Hickman
- Lawrence Berkeley National Lab Jonny Rutqvist
- University of Utah / EGI
 Pete Rose
- Texas A&M
 Ahmad Ghassemi
- University of Oregon
 Emilie Hooft
- Foulger Consulting
 Gillian Foulger

Project Management and Tools

AltaRock Project Team

Susan Petty – Principal Invesigator

Will Osborn – Project Manager

Todd Jaffe – Permitting

Adrian Foley – Public Relations

Joe Iovenitti – Geology

Trenton Cladouhos – Stress Analysis

Laura Nofziger – Stimulation

Ben Larson – Geochemistry

Daniel Bour - Zonal Isolation

Technical Advisory Committee

Doug Perry (Davenport Power)

Dave Blackwell (SMU)

Louis Capuano (ThermaSource)

Bill Livesay (AltaRock)

Al Waibel (Columbia Geoscience)

Specialized Tools

AltaStim

TOUGHREACT / TOUGH-FLAC

Chemical Diverters

Mechanical Diverters

Single-Well Test Methods

Quantum Dot Tracers

Distributed Temperature Sensing

Fabry-Perot Pressure Transducer

Borehole Televiewer

Open-Hole Isolation Methods

Expandable Liner Hanger

MSA / Tilt Meters

Project Objectives

To demonstrate the development and operation of an Engineered Geothermal System

- Site and resource investigation
- Stimulation of existing well to create geothermal reservoir
- Production well drilling and completion
- Testing of well productivity and reservoir characteristics
- Conceptual modeling of commercial-scale EGS wellfield and power plant

Primary Goals

- Create EGS fracture network around existing borehole
- Drill two production wells into mapped fracture network
- Produce single-well mass flow rate of 75 Kg/s (595 kph)

Pre-Stimulation 2010 - Spring 2011

- Pre-Stimulation
 - Site and wellbore readiness
 - Site preparation
 - Sump, well pad, roads
 - Water wells
- Stimulation Plan
 - Geoscience review, lab studies, LiDAR
 - Initial Microseismic Array ("MSA") design, install, monitor
 - Injection well
 - Conduct integrity test
 - Measure baseline (pre-stimulation) injectivity
 - Geophysical logs

Pre-Stimulation 2010 - Spring 2011

- Public Outreach
 - Multimedia presentation of project plan
 - Permitting and planning meetings
 - Public interaction through various media outlets
- Permitting
 - Notice of Intent (exploration, operation, drilling)
 - Groundwater use
 - Surface MSA installation and monitoring (complete)
 - Strong motion sensors
 - Underground injection
 - MSA calibration
 - Subsurface MSA sensors and telemetry
 - Stimulation
 - Drilling
 - Testing
 - Induced seismicity and Seismic Hazards Evaluation
 - Environmental Assessment
- Go/No-Go

Pine Mountain SMS Site

Injection Well Stimulation Spring-Summer 2011

- Preparation for Stimulation
 - Ongoing site maintenance
 - Materials procurement
 - Installation of subsurface sensors and telemetry
- Injection Well Stimulation
 - Rig mobilization
 - Wellhead installation
 - First stimulation
 - Zonal isolation (chemical, mechanical)
 - Additional stimulations and tracer injection
- Flow test
 - Mass flow, temperature, pressure
 - Well bore surveys
 - Chemical composition and tracer recovery
- Production well drilling plan
- Go/No-Go

Production Wells Fall 2011- Fall 2012

- Drill First Production Well
- Geophysical well logs
- Connectivity test
 - Pump groundwater into injector
 - Test production well and recirculate to injector
 - Mass flow, temperature, pressure, water make-up rate
 - Well bore surveys
 - Chemical composition and tracer recovery
- Stimulate production well, if needed
- Update numerical model and evaluate productivity
- Go/No-Go
- Drill second production well
- Conduct multi-well connectivity test
- Go/No-Go

Conceptual Modeling and Long-Term Monitoring

- Post-production reservoir response and long-term monitoring
- Update numerical model and evaluate resource potential
- Develop conceptual models
 - Wellfield expansion
 - Power plan design
 - Forecast reservoir performance
 - Estimate capital and operating cost
- Project Reports
 - Drilling, stimulation and test results
 - Reservoir performance
 - Peer-reviewed publications
 - Data posting to National Geothermal Data System

Meeting DOE EGS Program Objectives

Project Scope Meets DOE EGS Demonstration Objectives

Demonstrate reservoir creation that achieves a flow rate of 20 kg/s by 2015

Achieve a 10% increase in flow rate for EGS field site demonstration by 2011

Model the reservoir conductivity at an EGS system demonstration by 2011

Determine pre-stimulation reservoir flow rate for at least one EGS field site by 2010

Project Tasks Include DOE Essential Elements of EGS Development Phase I

- Site Selection surface analysis, well logs and well construction
 - Construct regional geologic model based on existing data
 - Share in Oregon LiDAR Consortium for enhanced surface feature imaging
 - Evaluate two existing full-size bore holes to select stimulation candidate
 - Temple/USGS borehole televiewer to target stimulation
- Reservoir Characterization downhole instruments and use of data in modeling
 - Install and calibrate surface and subsurface seismometers
 - Texas A&M rock properties
 - LBNL native state THMC model
 - AltaStim stimulation modeling
 - Induced Seismicity and Seismic Hazards Study

Meeting DOE EGS Program Objectives (cont'd)

Phase II

- Reservoir Creation establish permeability and create and maintain cracks
 - Stimulate injection well using chemical (no rig) and mechanical diverters (rig)
 - Monitor fracture growth using focused MSA
- Reservoir Validation fracture imaging tools
 - Repeat borehole televiewer to assess effects of hydroshearing
 - Inject tracers and execute single-well flow test methods
 - Use distributed temperature sensing to identify flow zones
- Interwell Connectivity tools to ensure that suitable flow path connects wells, such as tracers
 - Conduct two-well and three-well connectivity tests
 - Analyze conservative and non-conservative tracers to assess effective volume, rate, etc.
 - Conduct dual-well stimulation as necessary

Phase III

- Reservoir Scale-Up and Sustainability tools for selecting additional locations for wells, and long-term operation and maintenance of an economic EGS installation
 - Calibrate numerical models with real EGS performance data
 - Forecast reservoir performance over typical plant and field design life
- Energy Conversion suitable energy conversion systems
 - Build conceptual model of commercial-scale power plant and wellfield
 - Estimate capital and operating costs of commercial-scale EGS facility

Mandatory Summary Slide

- Goal of project: Improve EGS economics by stimulating multiple zones
- Technology Development:
 - Reduce risk by improved fracture mapping and information gather and modeling.
 - Test methods to evaluate the created reservoir
 - Increase our understanding of induced seismicity through better understanding of stresses, natural seismicity and existing faults and fractures