Comparison of Fuel Cell Technologies

Fuel Cell Type	Common Electrolyte	Operating Temperature	Typical Stack Size	Efficiency	Applications	Advantages	Disadvantages
Polymer Electrolyte Membrane (PEM)	Perfluoro sulfonic acid	50-100°C 122-212° typically 80°C	< 1kW-100kW	60% transpor- tation 35% stationary	 Backup power Portable power Distributed generation Transporation Specialty vehicles 	 Solid electrolyte re- duces corrosion & electrolyte management problems Low temperature Quick start-up 	 Expensive catalysts Sensitive to fuel impurities Low temperature waste heat
Alkaline (AFC)	Aqueous solution of potassium hydroxide soaked in a matrix	90-100°C 194-212°F	10–100 kW	60%	• Military • Space	 Cathode reaction faster in alkaline electrolyte, leads to high performance Low cost components 	 Sensitive to CO₂ in fuel and air Electrolyte management
Phosphoric Acid (PAFC)	Phosphoric acid soaked in a matrix	150-200°C 302-392°F	400 kW 100 kW module	40%	• Distributed generation	 Higher temperature enables CHP Increased tolerance to fuel impurities 	 Pt catalyst Long start up time Low current and power
Molten Carbonate (MCFC)	Solution of lithium, sodium, and/ or potassium carbonates, soaked in a matrix	600-700°C 1112-1292°F	300 kW-3 MW 300 kW module	45-50%	Electric utilityDistributed generation	 High efficiency Fuel flexibility Can use a variety of catalysts Suitable for CHP 	 High temperature corrosion and breakdown of cell components Long start up time Low power density
Solid Oxide (SOFC)	Yttria stabi- lized zirconia	700-1000°C 1202-1832°F	1 kW-2 MW	60%	 Auxiliary power Electric utility Distributed generation 	 High efficiency Fuel flexibility Can use a variety of catalysts Solid electrolyte Suitable for CHP & CHHP Hybrid/GT cycle 	 High temperature corrosion and breakdown of cell components High temperature operation requires long start up time and limits

For More Information

More information on the Fuel Cell Technologies Program is available at http://www.hydrogenandfuelcells.energy.gov.

U.S. DEPARTMENT OF

EERE Information Center

1-877-EERE-INFO (1-877-337-3463) www.eere.energy.gov/informationcenter

Energy Efficiency & Renewable Energy

February 2011 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste.