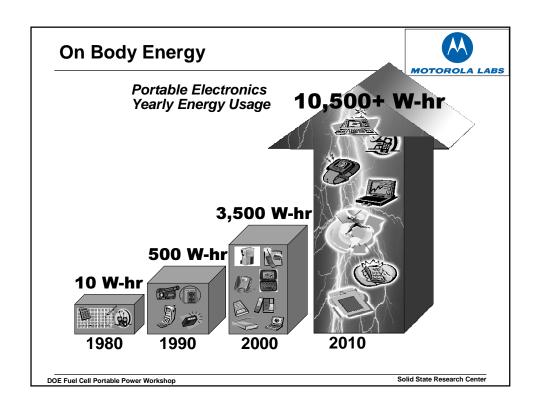


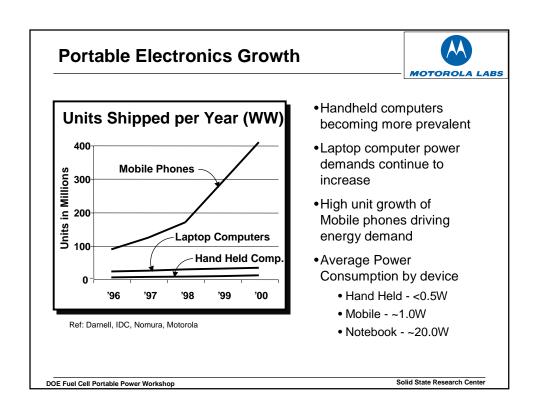
End User Perspective – Industrial Consumer Electronics Power (< 20-50W)

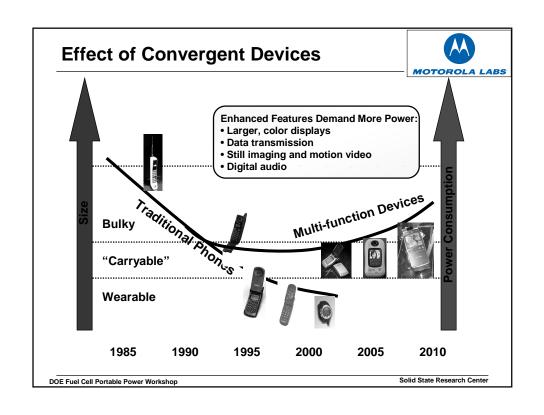
Department of Energy Fuel Cell Portable Power Workshop

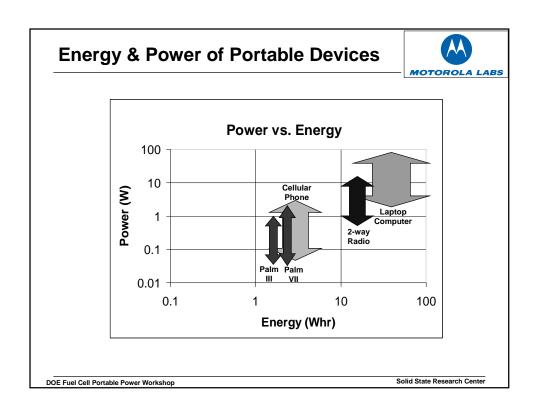
Jerry Hallmark
Manager Energy Technologies Lab
Motorola Labs

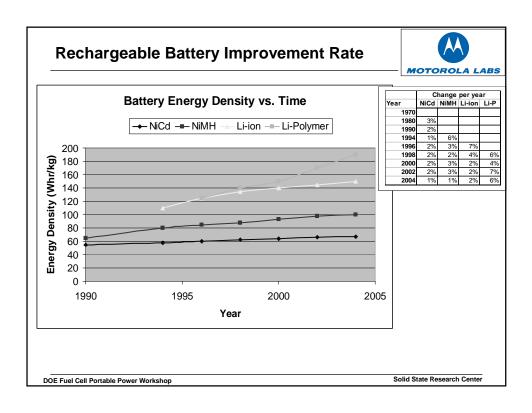
DOE Fuel Cell Portable Power Workshop


Solid State Research Center


Outline




- Energy & Power of Portable Devices
- Fuel Cell Applications & Cost
- Key Requirements & Challenges
- Fuels for Portable Fuel Cells
- Fuel Transportation Regulations and Standards
- Methanol Fuel Cells
 - Direct Methanol Fuel Cells
 - Reformed Methanol Fuel Cells
- Technical Challenges


DOE Fuel Cell Portable Power Workshop

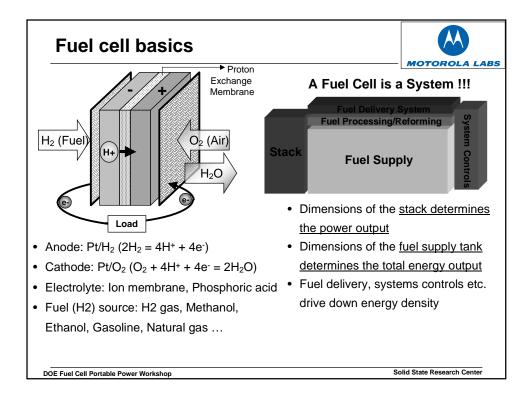
Fuel Cell Applications

Near-term applications (2002 - 2004):

- Desktop/travel chargers
 - Cell-phones, Laptops, PDAs, etc.
- Cordless (no socket, no CLA)
- "Instant recharge"
- Energy Density less than Li-ion?
 - Refill convenience vs. recharge

Longer term (2003 - 2005):

- Hybrid (fuel cell + battery) or battery replacements:
 - Cell-phones, Laptops, PDAs, etc.
- Energy Density ~ 3 to 5X Li-ion pack

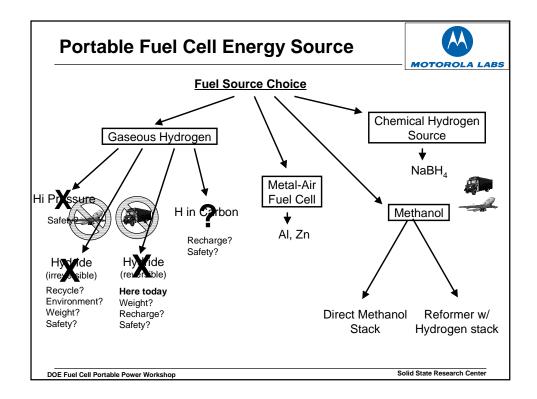

DOE Fuel Cell Portable Power Workshop

Fuel Cell Cost

- Desktop/Travel/Vehicle Charger
 - Current battery chargers: \$25-50 retail price
- Rechargeable Batteries
 - NiMH, Li-Ion, Li-polymer
 - \$20-50 (cell phone)
 - \$50-150 (laptop)
- Fuel Cell System
 - Total cost "comparable" to charger/battery
 - Includes both fuel cell and battery, supercap, etc.
 - Premium for instant recharge/refuel?

DOE Fuel Cell Portable Power Workshop

Key Requirements and Challenges


Technical Requirements for Fuel Cells

- High Energy Density!!!
 - Small, lightweight fuel cell system
 - High conversion efficiency of chemical to electrical energy
 - High energy density fuel/container
 - > Majority of volume/weight in system is fuel

Challenges

- Fuel cell system comparable to battery
 - Size, cost, safety, reliability, recharge/refuel availability
- Requires access to air for oxygen
- User expectations & perception
 - Battery replacement vs. "wireless charger"

DOE Fuel Cell Portable Power Workshop

Anode material energy densities Limitation of Li-ion energy density? **Anode Theoretical Application** Anode material / Fuel Energy density (Wh/kg) Cathode Carbon - Graphite Lithium-ion 1116 adds to weight. Reduces Lithium metal Lithium 11580 energy density. Aluminum-air Aluminum 4000 Air (O2) Zinc-air Zinc 1000 electrode. Requires additional Hydrogen Fuel Cell (FC) Hydrogen 42,000 components, controls, etc. 5960 Methanol FC Methanol Solid State Research Center DOE Fuel Cell Portable Power Workshop

How Do Fuel Cells Compare? MOTOROLA LABS Volumetric Energy Density Specific Energy Density **Energy Source** (Watt*Hours per Liter) (Watt*Hours per Kg) **Rechargeable Batteries** Ni/Cd (cell only) 130 40 Ni/MH (cell only) 200 60 Li-Ion Polymer (cell only) 300 160 Li-lon (cell only) 310 125 Li-Ion Polymer (pack) 170 105 Li-lon (pack) 190 100 **Fuel Cells** 4,780 5,960 **Methanol (theoretical)** Methanol (35% eff) 1,673 2,086 Methanol (35% + FC) << 1,673 << 2,086 DOE Fuel Cell Portable Power Workshop Solid State Research Center

Energy Density of Fuel + Container

Energy Source	Volumetric Energy Density (Watt*Hours per Liter)	Specific Energy Density (Watt*Hours per Kg)
Hydrogen Compr H2 (2000psi) Compr H2 (50% eff) Compr H2 (50% eff + FC) Metal Hydride Metal Hydride (50% eff) Metal Hydride (50% + FC)	520 260 <260 600 300 <300	248 124 <124 236 118 <118
Fuel Cells Methanol (theoretical) Methanol (35% eff) Methanol (35% + FC)	4,780 1,673 << 1,673	5,960 2,086 << 2,086

DOE Fuel Cell Portable Power Workshop

Solid State Research Center

Fuel Packaging and Distribution

Methanol "cartridge"

- 20-100cc Methanol (pure vs. diluted)
- Leak-proof interface to fuel cell (& resealing)
- · Additives for color, taste, smell?
 - Effect on fuel cell
- Refillable/recyclable vs. disposable

Distribution

- · Cost of raw methanol in cartridge very low
 - Few ¢ (@\$1/gallon)
- Cost of cartridge should be < \$1
 - Battery recharging is "free"
- Introduction to large geographic markets

DOE Fuel Cell Portable Power Workshop

Fuel Transportation Issues

Initial Findings from USFCC Study

- · Hydrogen, metal hydrides, and methanol are:
 - Hazardous materials (DOT)
 - Dangerous goods (UN).
- Current regulations do not allow carry-on in passenger airlines.
- Limited quantity of metal hydride or methanol may be allowed (exemption):
 - Checked baggage only, not carry-on.
 - Exemption for methanol assumes dilution in water (<24%).
 - Hydrogen storage in metal hydrogen may invalidate exemption classification.
- Compressed hydrogen, water reactive metal hydride not currently exempted.
- Limited quantity of NaBH₄ mixture may be allowed.

DOE Fuel Cell Portable Power Workshop

Solid State Research Center

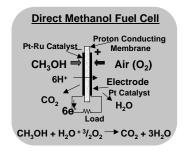
Fuel Transportation Issues

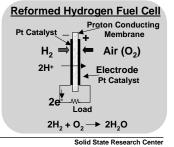
Initial Findings from USFCC Study

- Potential exemptions and/or rulemakings precedents were identified (butane lighters):
 - Limitation on quantity & pressure
- Other uses of fuels & fuel cells must be evaluated:
 - Sealed vs. opened fuel container
 - Fuels (cartridge) inside Fuel Cell
 - Operation of Fuel Cell
- Fuel Cells (without fuel) not classified as hazardous.
- DOT suggestions:
 - Begin work on standards immediately
 - In short term next 1-2 years, individual companies apply for exemption – based on (draft) standards
 - Rulemaking possible after more experience with devices

DOE Fuel Cell Portable Power Workshop

Methanol Fuel Cells


Two Approaches


Direct Methanol Fuel Cells

- Lower Power Density (10-50mW/cm²)
- RT 80°C Operation
- · Liquid & Gas Handling

Reformed Methanol-Hydrogen Fuel Cells

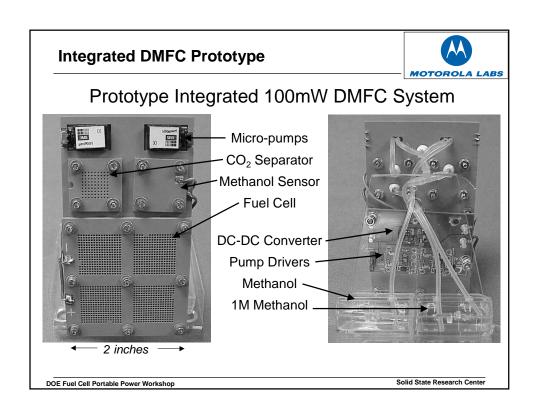
- Higher Power Density (25-200mW/cm²)
- Reformer Operating Temp >200°C
- · Liquid & Gas Handling

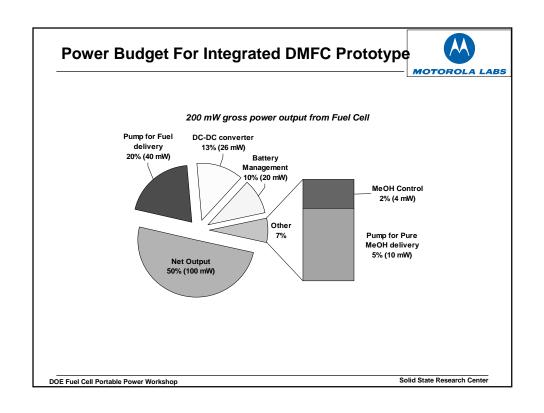
DOE Fuel Cell Portable Power Workshop

Direct Methanol Fuel Cell System

Objective:

• Direct Methanol Fuel Cells system for portable electronics.


System features:


• Fuel: Liquid Methanol

Air Supply: Air breathing --> forced air

Operating Temp: Ambient --> elevated temp (60°C)

DOE Fuel Cell Portable Power Workshop

"Active" DMFC Technology

Features

- Nafion-based MEA
 - With reduced crossover & water drag
- Good catalyst activity (>30 mW/cm² @RT)
- Active water recovery/MeOH dilution, CO₂ separation
- Pure MeOH fuel
- Power down/off no self discharge

Possible Issues

- Water recovery/elimination
- Miniature, low-power pumps
- "Balance of Plant" efficiency
- Overall system energy density

DOE Fuel Cell Portable Power Workshop

Solid State Research Center

"Passive" DMFC Technology

Features

- Polymer membrane with reduced crossover or Liquid electrolyte
- · High catalyst activity
- No moving parts?

Possible Issues

- Water recovery/elimination
- Energy density of fuel (30-50% MeOH) system
- Fuel replacement/delivery
- Power down/off (self-discharge?)
- Liquid electrolyte: caustic, corrosion

DOE Fuel Cell Portable Power Workshop

Reformed Hydrogen Fuel Cell System

Objective:

• Miniature in-situ H₂ generator & fuel cell system.

System features:

Fuel/Air: Liquid Methanol – Forced Air
 Reformer: Methanol Steam Reformer (~225°C)

- Heater: Methanol combustion

Fuel Cell Type: High Temperature PEM (~150°C)
 CO clean up: None (<2% CO in reformate stream)

DOE Fuel Cell Portable Power Workshop

Ceramic RHFC Technology

Features

- Reformed Methanol-to-Hydrogen Fuel Cell
- MeOH + H2O fuel
- CMEMS thermally integrated construction
- High-temp PBI-based MEA (>100 mW/cm²)

Possible Issues

- Miniature, low-power pumps
- BOP efficiency
- · Overall system energy density

DOE Fuel Cell Portable Power Workshop

Solid State Research Center

Other RHFC Technologies

Features

- Gasoline or methanol steam reformer
 - Metallic reactors (discrete components)
- "Standard" PEMFC stack

Possible Issues

- Integration of components
- Thermal integration
- CO cleanup (size of WGS + PROX)

DOE Fuel Cell Portable Power Workshop

Chemical Hydrogen Source

Features

- Sodium Borohydride chemical hydrogen source
- "Standard" PEMFC stack

Possible Issues

- NaBH₄ delivery gravity independent?
- · Control of reaction limited release of hydrogen
- Micropumps

DOE Fuel Cell Portable Power Workshop

Solid State Research Center

Fuel Cells for Portable Electronics

Technical challenges to overcome

- DMFC
 - Performance degradation (catalyst vs. flooding)
 - Temperature range (operating, storage)
 - Catalyst activity vs. loading
 - Water recovery
 - Methanol crossover & water drag (simplifies system)
- RHFC
 - Methanol reformer catalyst (stability, durability)
- Common
 - Miniature, low power pumps (liquid, gas)
 - Fuel additives/packaging (flammability, toxicity), distribution
- H2 PEMFC
 - Hydrogen storage, safety

DOE Fuel Cell Portable Power Workshop