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The Hydrogen Economy will require clean energy

l Hydrogen is an energy carrier, not an energy source

l A Hydrogen Economy only makes sense if hydrogen is
produced with non-fossil, non-greenhouse gas energy

l Our options for clean energy are very limited
• Nuclear (Fission, Fusion)

• Solar (Solar thermal, Photovoltaic)

• Renewables (Hydropower, Geothermal, Wind, Biomass)

 Nuclear power can provide that energy
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How can we get hydrogen from nuclear energy?

l Electric power generation – Electrolysis

• Overall efficiency approximately 25-30%
(efficiency of electric power generation x efficiency of electrolysis)

• Higher temperature reactors can lead to higher efficiency, ~35-40%

l Heat – Thermochemical water-splitting

• A thermochemical water-splitting cycle is a set of chemical reactions that
sum to the decomposition of water into hydrogen and oxygen

• Energy is input via endothermic high temperature chemical reactions,
rejected via exothermic low temperature chemical reactions

• Splits water at moderate temperatures (~700-900°C vs ~5,000°C for thermolysis)

• Plant efficiencies of ~50%

l Electricity/Heat – High temperature electrolysis or Hybrid
thermochemical water-splitting

• Efficiencies of ~40%

 The choice will depend on overall economics
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NERI is searching for an economical path to hydrogen
production with nuclear power

l Objective of our Project: “Define an economically feasible concept
for the production of hydrogen, by nuclear means, using an
advanced high temperature nuclear reactor as the energy source.”

 

l Tasks for 3 year, $1.6M study: Team: SNL, UoK, GA

• Carry out extensive literature review to identify candidate thermochemical
water-splitting cycles  (All)

• Develop and apply screening criteria to identify most promising cycles and
to select one for detailed analysis  (All)

• Evaluate candidate nuclear reactors, select most promising options and
select one for use in the chemical cycle analysis  (SNL)

• Develop detailed chemical flowsheet for selected process and determine
projected process efficiency  (UoK, GA)

• Estimate the size and cost of the process equipment  (All)



s NERI H2 6May02 5

 Literature survey located 822 references and 115 cycles

l Literature database will be
available on the Internet

l Go-No go feasibility and
ES&H criteria were applied

l Quantifiable screening
criteria were developed and
each cycle was given a
numerical score

Screening reducing the
number of cycles to 25
l Detailed investigations were made of each cycle

• Thermodynamic calculations

• Preliminary block flow diagrams

l Two cycles stood out as well-suited for coupling to nuclear energy:
Adiabatic UT-3 cycle and Sulfur-Iodine cycle

 Detailed evaluation yielded 2 cycles



s NERI H2 6May02 6

The adiabatic UT-3 process is conceptually simple. . .

l Invented at Univ. of Tokyo, being pursued in Japan, SI cycle is backup
• Chemistry demonstrated in pilot plant
• Requires 760°C, 40% efficiency predicted, 45-49% with high T co-generation

l Four gas solid reactions in stationary beds (CaBr2 CaO, FeBr2 Fe3O4)

l Challenges:
• H2 and O2 removed via membranes – possible scale-up difficulties
• H2 and O2 produced at subatmospheric pressures, must be compressed
• Lower efficiency and possible solid attrition in non-steady state operation
• Limited potential for improvement – already at melting point of CaBr2

 . . . but requires development
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The Sulfur-Iodine cycle is an all-liquid/gas process. . .

l Invented at GA in 1970s
• Serious laboratory investigations

done for nuclear and solar

l Advantages:
• All fluid continuous process,

chemicals all recycled; no effluents
• Chemistry reactions all

demonstrated
• Highest efficiency quoted for any

water-splitting process, 52%
• Improvements have been identified

for still higher efficiency, lower cost

l Challenges:
• Requires high temperature, 800°C
• Must be demonstrated as an

integrated closed loop cycle
• Process cost and economics must

be verified

l The S-I cycle could make H2 at 45-
55% efficiency and co-produce H2
and electricity at over 60%

 . . . and has the potential to produce low cost hydrogen
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The Sulfur-Iodine cycle . . .

 . . . is an all fluid process and was chosen for our work
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SNL evaluated candidate reactors

l Considered 9 categories of reactors:

• Pressurized water-cooled, Boiling water-cooled, Organic-cooled, Alkali
metal-cooled, Heavy metal-cooled, Gas-cooled, Molten salt-cooled, Liquid-
core and Gas-core

l Assessed reactor features for interface with SI cycle against 5
requirements and 5 criteria, and considered relative development
requirements

l Three reactor types are suitable for thermochemical hydrogen production

• Helium Gas Cooled Reactor

- Superior – Demonstrated temperature capability

• Heavy Metal Cooled Reactor (Lead-Bismuth)

- Probably adequate with sufficient development

• Molten Salt Cooled Reactor

- Probably adequate with sufficient development

 … and recommended helium gas-cooled reactors
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The flowsheet design of the SI process will be completed
in July '02

l Used chemical process design code Aspen Plus

l Evaluated available thermodynamic data, evaluated and improved
thermodynamic models, contacting US and foreign researchers
interested in thermochemical hydrogen production

l Designed the three main chemical process systems

• Prime reaction (2H2O + SO2 + I2  H2SO4 + 2HI)

• Sulfuric acid concentration and decomposition (2H2SO4  2SO2 + 2H2O + O2)

• Hydrogen iodide concentration and decomposition (2HI  I2 + H2)

l Additional chemical data will improve efficiency and cost

• Sulfuric acid thermodynamics at high concentrations

• Iodine systems equilibrium thermodynamics

• Better data will allow a more efficient design

 Additional experimental data — chemical properties and
integrated loop operation —required before construction



The Modular Helium Reactor solves the
problems of first generation reactors
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•  Coupled to gas turbine: GT-MHR, 48% efficiency
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•  Proliferation resistant due to hard neutron spectrum

. . . Opens a new opportunity for nuclear power
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MHR builds on 40 years of progressMHR builds on 40 years of progressMHR builds on 40 years of progress

This is the foundation for today’s opportunity.
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Uranium Oxide (UO2)

Porous Carbon Buffer

Silicon Carbide

Pyrolytic Carbon

PARTICLESPARTICLES COMPACTSCOMPACTS FUEL ELEMENTSFUEL ELEMENTS

} TRISO Coating

TRISO Coatings and Graphite are Excellent Engineered Barriers for Normal Operation,
Severe Accidents, and Permanent Disposal

TRISO fuel particles are highly engineeredTRISO fuel particles are highly engineered
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GA supported San Diego State University to develop
economic models  for nuclear production of hydrogen

• Modest effort, internally funded

• Provided MBA project for SDSU
students

• Very positive interactions with
Stuart Energy, leading developer
of H2 electrolysis units

• Initial Effort:
– Develop simple economic models

– Compare GT-MHR + Electrolysis
with SI-MHR production of H2

– Provide a tool for preliminary
parametric surveys



We have 2 models of H2 production

GT-MHR + Electrolysis MHR + SI Cycle
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Economic assumptions span a wide range

Description GT-MHR MHR
alone

SI-H2 Cycle H2-MHR

Total Overnight Cost, $M 1,290 968 504 - 1,008 1,472 - 1,976
($1120/kWe) ($210-420/kWt)

Operating Cost, $M/year 127 95.3 33.6 - 67.2 128.9 - 162.5

Efficiency — production 48% 40 - 60%
                  — electrolysis 65 - 95%

Electrolysis  Unit Cost $288M–1.2B
($250-1000/kWe)

Electricity Distribution
Cost Multiplier

1.0 - 3.0

Capital Recovery Rate 5 - 20% 5 - 20% 5 - 20% 5 - 20%

Transmission distance 0-1000 mi 0-1000 mi

Intent:  Use model parametrically



Example of Busbar H2 Cost Estimates

Assume median SI H2 system cost ($315/kWt) and efficiency (50%)

Electrolysis at Stuart Energy goal of $250/kWe

Hydrogen Production Costs
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Nuclear Production of H2 Appears Attractive

• Our NERI study team identified attractive water-
splitting cycle and nuclear reactor candidates
– Chose Sulfur-Iodine cycle and gas-cooled reactor

• Complete flowsheet design and cost estimate will
be done in July

• We expect high efficiency and low H2 cost



Effort will be needed to achieve economic
hydrogen from nuclear energy...

• The first steps are
– Demonstrate integrated SI loop operation

• Follow-on NERI proposal to DOE/NE for part of this
• Are there alternate sources?

– Measure needed chemical data (useful for any heat source)
• University or Lab task?

• Next proceed with a Pilot Plant
– Initial operation with simulated nuclear heat source
– Then move to a nuclear heat source (NP-2010?)

• Then build a H2-producing Nuclear Demo Plant
– NP-2010 could be this demonstration

... but the path forward appears clear


