

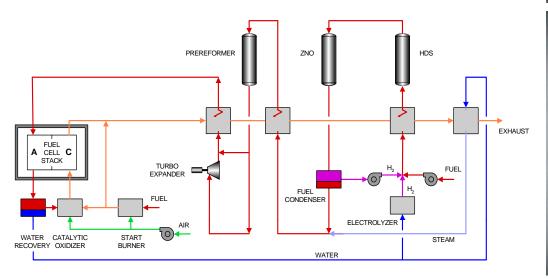
SYSTEM DESIGN

Lessons Learned Generic Concepts Characteristics & Impacts

Don Hoffman Ship Systems & Engineering Research Division

March 2011

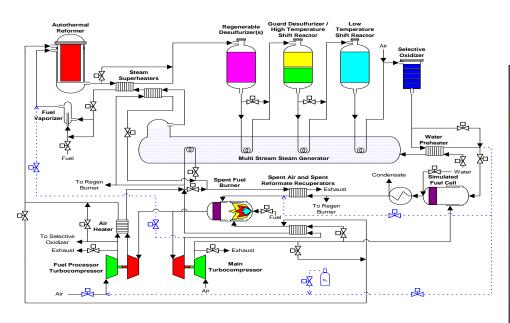
Distribution Statement A: Approved for public release; distribution is unlimited.


Ship Service Fuel Cell Program Lessons Learned

625 Molten Carbonate Ship Service Fuel Cell (NATO F76/JP5 Logistics Fuel)

Ship Service Fuel Cell Program

- MCFC with steam reformer
- Fuel reformer built for methane production
- 302 Hours On Load Operation
- 48% Efficiency



500 kWe Integrated Fuel Processor (NATO F76/JP5 Logistics Fuel)

Ship Service Fuel Cell Program

- Low Temperature PEM with ATR reformer
- Gas clean up process
- Waste heat recovery to pressurize process
- Process stability issues prevented significant integrated operation

SSFC Design Issues & Lessons Learned

• High Complexity with Auxiliaries

- Industrial reforming method adapted for shipboard use
- Low space velocity reactors
- Component accessibility
- Imbedded Instrumentation
- Greatest impact on overall density

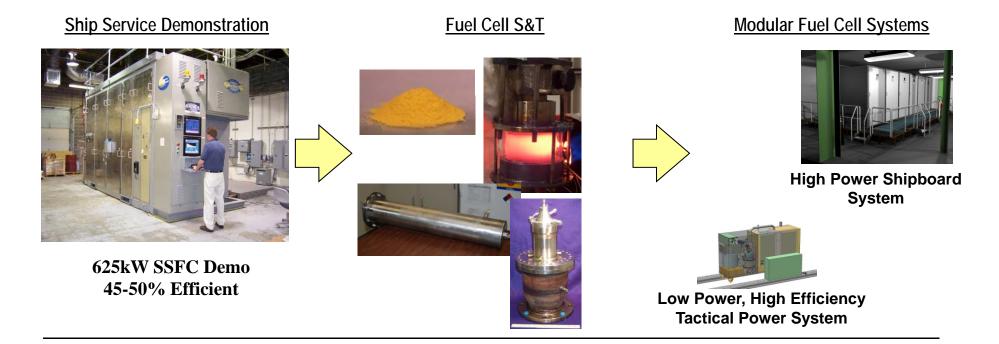
• High Pressure Gas Storage

- High pressure combustible gas
- Shipboard vent requirements

• Start Time

- Fuel Cell & reformer requirements large thermal mass
- Heat up technique direct vs indirect start process

Marinization


- Design for shipboard operation requires integrated packaging
- Design methods for inherently safe operation are different (industrial vs shipboard use)
- Control and dynamic operation needs to be accounted for up front in overall design

Price Point

- Total system design will affect overall price point (parts count)
- Need to follow existing model for incorporation of power generation (gas turbine/diesels) into fleet

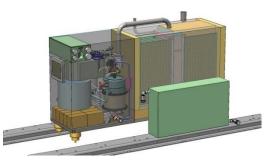
Navy Fuel Cell Processor Development

Ship Service Fuel Cell Program Lessons Learned Enable 3X improvement in volumetric density over SSFC demonstrators

 Risk Reduction of Fuel Cell Subsystems through scaled breadboard demonstration Future Full Scale Modular Fuel Cell System Design for Multi Platform Application

Solid Oxide Fuel Cell Tactical Power Low Sulfur JP8 Fuel

Total Power	5 kW	10kW	5 MW
Efficiency	25 %		50 %
Airborne Noise	50 db	<mark>60db</mark>	110 db
Volumetric Density	20 w/l	25w/l	35 w/l
Gravimetric Density	20 w/kg	35w/kg	40 w/kg
Start Time	15 min	, 30min	24 hrs
Life (MTBO)	1000 hrs	. 1250hr	10000 hrs
Hours per year operating	500 hrs	. 750hrs	9000 hrs
Scheduled Maintenance	250 hrs	250hrs	9000 hrs
Water Neutrality	0	100%	100%
Electric System Interface		450VAC, 3Phase	
Power Quality		Mil-Std-1332	
Environmental		Mil-Std-810	
Emissions		No Std Identified	
EMI		Mil-Std-461	
Shock & Vibration		Mil-Std-810	

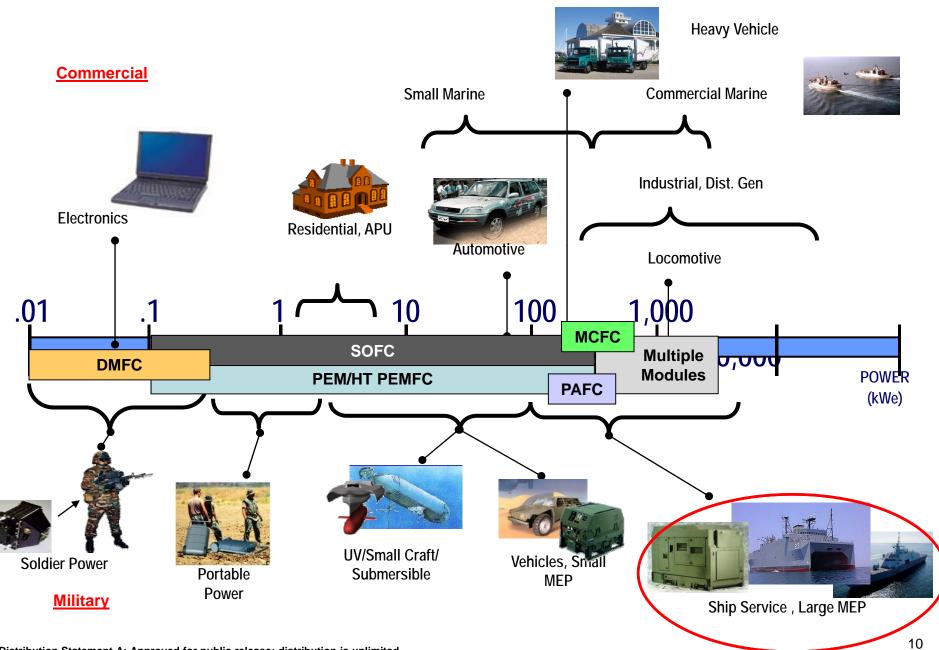

Distribution Statement A: Approved for public release; distribution is unlimited.

Solid Oxide Fuel Cell Tactical Power Low Sulfur JP8 Fuel

Towable Power

SOFC System

Vehicle Based APU

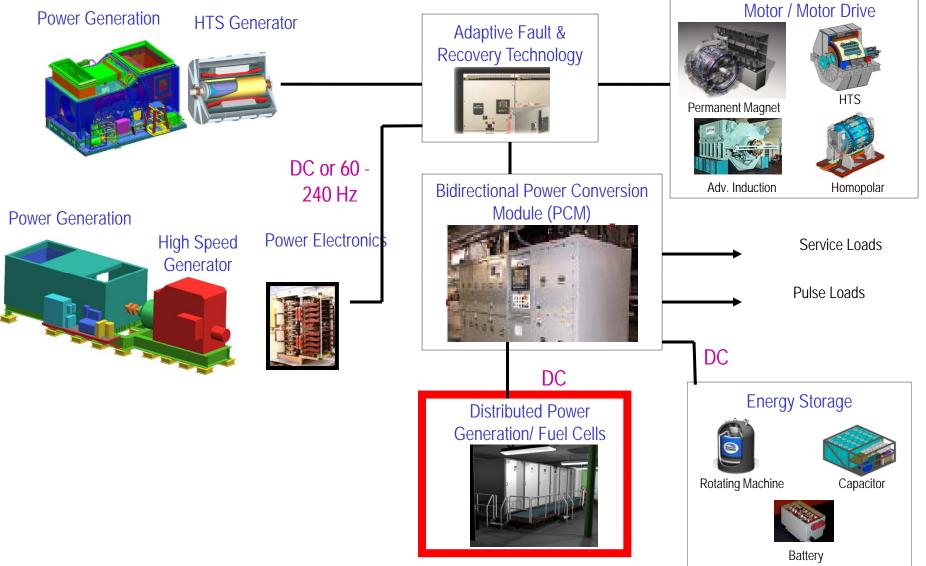

<u>Measure</u>	Demonstration Goal @ TRL 6
Power Output	10 kW
Efficiency	30-40%
System Weight	35 W/Kg
System Volume	20-30 W/liter (Power Core)

Shipboard Fuel Cell System Biofuel

Distribution Statement A: Approved for public release; distribution is unlimited.

Shipboard Fuel Cell System Biofuel

Total Power	5 kW	 5 MW
Efficiency	25 %	 50 %
Airborne Noise	50 db	 110 db
Volumetric Density	20 w/l	 35 w/l
Gravimetric Density	20 w/kg	 40 w/kg
Start Time	15 min	 24 hrs
Life (MTBO)	1000 hrs	 10000 hrs
Hours per year operating	500 hrs	 9000 hrs
Scheduled Maintenance	250 hrs	 9000 hrs
Water Neutrality	0	100%
Electric System Interface		
Power Quality		
Environmental		
Emissions		
EMI		
Shock & Vibration		



Other Criteria to Consider

- Exhaust temperatures
- Airflow
- Maintenance envelope
- Equipment removal concept
- Duty Cycle
- Structureborne Noise

Notional Electric Architecture

Distribution Statement A: Approved For Public Release, Distribution is Unlimited

Shipboard Fuel Cell Characteristics & Impacts

1st Step: Shipboard Power Needs Operating w Biofuel

2nd Step: Specification Prioritization

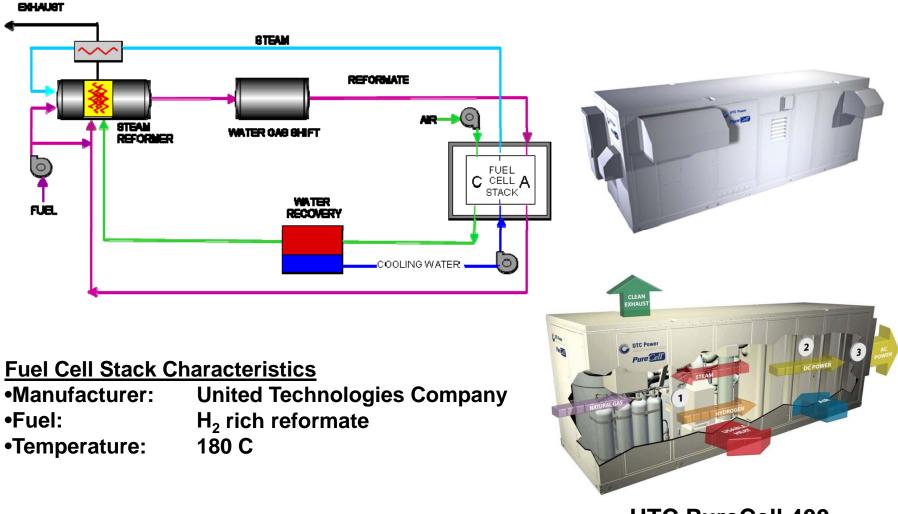
Action:

Prioritize & identify shipboard fuel cell characteristic information based on Shipboard Power Need

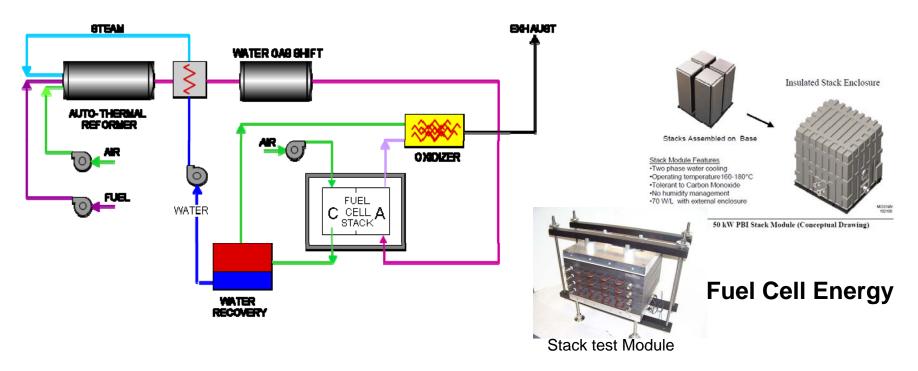
	Total Power
	Efficiency
	Airborne Noise
	Volumetric Density
	Gravimetric Density
	Start Time
	Life (MTBO)
	Hours per year operating
	Scheduled Maintenance
	Water Neutrality
	Electric System Interface
	Power Quality
	Environmental
	Emissions
	EMI
	Shock & Vibration

Fuel Cell Types

	Electrolyte	Cell Temp	Fuel
Proton Exchange Membrane (PEM)	Polymer Membrane (Solid)	70-90 C	Pure Hydrogen
Phosphoric Acid (PAFC)	Phosphoric Acid (Liquid)	120-180 C	Hydrogen rich reformate
High Temp PEM (HTPEM)	Phosphoric Acid Polymer (Solid)	120-180 C	Hydrogen rich reformate
Molten Carbonate (MCFC)	Potassium Lithium Carbonate (Liquid)	650 C	Methane rich reformate
Solid Oxide (SOFC) (Tubular, planar)	Solid Zirconium Oxide Ceramic (Solid)	700-900 C	Hydrogen rich reformate

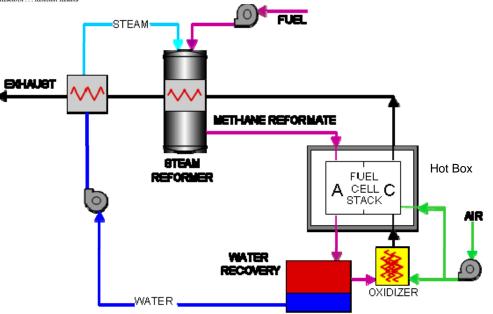

Low Temperature PEM System

GM Automotive Fuel Cell


Phosphoric Acid Fuel Cell System

UTC PureCell 400

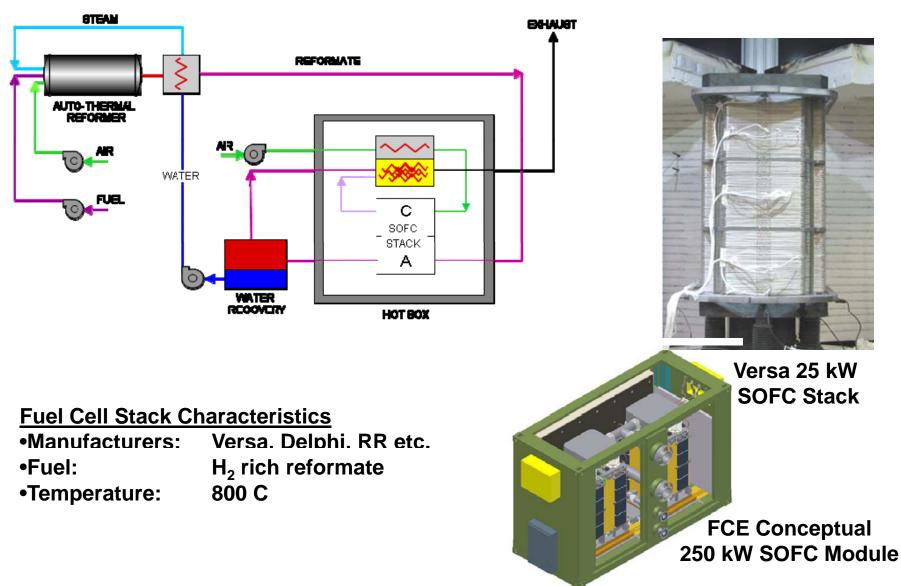
High Temperature PEM/PBI System


Fuel Cell Stack Characteristics		
•Manufacturer:	Enercell, FCE etc.	
•Fuel:	H ₂ rich reformate	
•Temperature:	180 C	

Enercell HT PEM

Molten Carbonate Fuel Cell System

MCFC Stack


FCE SSFC Module

Fuel Cell Characteristics

 Manufacturer: 	Fuel Cell Energy
•Fuel:	CH ₄ rich reformate
•Temperature:	650 C

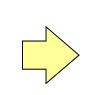
Solid Oxide Fuel Cell System

3rd Step: Technology Assessment for Shipboard Fuel Cell System - Biofuel

Ship Service Demonstration

Fuel Cell Components

625kW SSFC Demo


Ship Service Fuel Cell Program Lessons Learned

45-50% Efficient

• Technical Challenges of Advanced Fuel Cell Components Operating on Biofuel

 System Integration of Advanced Fuel Cell
 Components based on Shipboard Power Need

High Power Shipboard System

Modular Fuel Cell Systems

Questions?

Shipboard Fuel Cell System Installation