

Radoslav Atanasoski

DOE/3M Award DE-EE0000456

Kickoff meeting for new DOE Fuel Cell projects from solicitation DE-PS36-08GO98009 and lab call DE-PS36-08GO98010

Washington DC, Sept. 30, 2009

Project Overwiew

Barriers

C. Electrode Performance (Technical targets: See milestones)

Timeline

- Project start date: August 1, 2009
- Project end date: July 31, 2013
- Percent complete: ~ 5%

Collaborations

- Dalhousie University (subcontractor)
 - Dr. David Stevens; High-throughput catalyst synthesis and basic characterization
- Oak Ridge National Lab (subcontractor)
 - Dr. Karren More; TEM Characterization

 <u>3M Team</u>: George Vernstrom Greg Haugen Mark Debe Radoslav Atanasoski

BUDGET	FY10	FY11	FY12	FY13	Total
3M Cost Share	352,805	315,128	294,465	194,035	1,156,433
DOE Funding	1,411,222	1,260,511	1,177,861	776,139	4,625,732
	, ,	, ,	, ,	,	
Total	1 764 027	1 575 638	1 472 326	970 174	5 782 165
rotar		1,010,000	1,112,020	010,111	0,102,100

PEMFC with fuel starved region

Electrochemical reactions leading to carbon corrosion and Pt dissolution

The absence of hydrogen at the anode is necessary but not sufficient to provoke and maintain cathode potential > 1.23 V.

The **presence of oxygen** at the anode is required for the transient phenomena to happen.

A, C; normal FC operation; B, D; operation in fuel starved region.

3M approach: Alleviate the damaging effects from within the fuel cells, by modifying both the anode and the cathode catalysts that will enable PEM fuel cell systems to weather the conditions in the fuel cell at voltages beyond the thermodynamic stability of water during the transient periods.

To achieve the above goal 3M will work on **two major concepts**: **1. Catalysts with high oxygen evolution reaction (OER) activity 2. Anode catalysts with low oxygen reduction (ORR) reaction activity**

- 1. Presence of highly active OER catalyst on the cathode will reduce the overpotential for a given current demand (*region B*).
- Key requirements: Implement the OER catalyst with negligible inhibition of the ORR on the existing cathode catalyst and minimally added PGM.
- Deposit the OER catalyst as a separate phase as nanoparticles.
- Inhibition of the ORR on the anode side will lower the ORR current (*region* D). Through reduced proton demand this then lowers the OER current on the cathode (*region B*) resulting in reduced cathode potential.
- Key requirement: Implement the ORR inhibiting component with negligible inhibition of the HOR, either as a mixed or a separate phase.

Β

Α

The Proposal: What is New and Why 3M

The two-part catalyst approach makes good electrochemical sense. The two concepts proposed combined with the NSTF support demonstrated stability is an extremely compelling aspect

C

the prior art (by the applicants and others) is well documented.

Comparison of FC characteristics of Pt/C and Pt/NSTF MEAs before and after exposure at 1.5 V. Pt/NSTF catalyst exposed for 180 minutes; Pt/C catalyst exposed for 30 minutes. **A**: ECSA (NSTF-Pt, top; Pt/C, bottom); **B**: AC impedance; **C**: Polarization curves.

Concept 1 – OER: Ir Catalyst

OER polarization curves on NSTF PtCoMn ($0.1mg/cm^2$ Pt) catalyst over-coated with 5, 15 and 60 nm/cm² geo Ir. 50-cm² FC Counter electrode: same as working without Ir. Test conditions: FC 80 °C, Working: N₂; counter/reference: 1% H₂ in N₂; 1000 sccm, 0 psig, 100% RH; Potential scan rate: 1 mV/s.

At 1 mA/cm² only 1.1 μ g/cm² Ir depolarizes OER by 100 mV!

Concept 1 – OER: Most active catalysts

Polarization curves for oxygen evolution on (a) Pt, (b) RuO_2 single crystal, and (c) RuO₂ film. 1M HClO₄ at 25 °C

Dependence of Tafel slopes for OER on surface composition of two $RuO_2 + IrO_2$ electrodes. PGM precursors dissolved in aqueous (open symbols) and nonaqueous solvents (closed symbols). PGM content determined by XPS.

Concept 1 – OER: Most active and stable catalysts

Target composition

Activity: RuO₂

High exchange c.d.; 40 mV/decade Tafel slope; good charge capacity Activity and **stability**: $RuO_2 + IrO_2$

Good stability and activity; up to 75% surface IrO_2 is OK Stability and **cost**: TiO_2 , MnO_2

Interfacial stability improves from 400 °C to 600+ °C

Stable interfacing with the ORR catalyst

All the components are isomorphous, rutile.

Structural considerations

Discrete nanoparticles in order to minimize blocking of the base ORR catalysts. (next slide)

Concept 1 - ORR/OER integrated catalyst

Schematic illustration of the proposed mixed ORR/OER catalyst concept

The Model:

Achieve 1cm² of OER catalyst on 1 cm² geo with OER nano-cubes of 3 nm sides to withstand 1 mA/cm² OER at <1.42 V.

Number of catalyst **particles** needed: **2.2x10**¹².

Ru content: 0.41 μ g/cm² RuO₂ or 0.31 μ g/cm² Ru.

ORR catalyst **surface area blocked**: 0.2 cm² or **0.5%** of NSTF entitlement.

With TiO_2 as support blocked ORR catalyst area is ~1%.

Concept 2 – ORR suppression on the anode

ORR curves for Pt_{1-x}Ta_x measured at 1600 rpm, 30 C in 0.1 M HClO₄. Samples **sputter-deposited** onto glassy carbon Hydrogen oxidation Overpotentials: 500 mA/cm² at 80 C in a 64-electrode cell

ORR is inhibited by a factor of 10 with only 12% Ta. HOR has practically no voltage losses even with 30+ % Ta. 10

Timeline and Participants roles

TASK	DESCRIPTION	Year 1			Year 2			Year 3				Year 4					
		Qtr 1	Qtr	2 Qtr	3 Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4	Qtr 1	Qtr 2	Qtr 3	Qtr 4
1	Efficient OER Catalysts																
	Mixed PGM oxide spreads																
	50 cm2 FC mixed oxides																
	Morphological characterisation																
	Laser ablation - nanoparticles																
	Integrated OER/ORR catalyst																
										1							
2	Low ORR activity anode catalysts					i i											
	Pt-M intermix screening																
	Pt overlayer screening																
	Morphological characterisation																
	50 cm2 FC intermixes and overlayers																
		1				1				1							
3	Scale-up and project outcomes									1							
	Best catalysts - scale-up									1							
	Full size FC MEA									1							
	Prepare >=100 cm2 MEAs									1							
	Short stack assembly and delivery									1							
	Final Report																
										;							
	Milestones and Go/No Go Decisions]				Milest	one 1			Mileste	one 2	Go/no	go			4	'
						i				I						Milesto	ne 3

3M – All tasks. Lead, determine, scale-up, and fabricate quantities of the standard (stock) starting and new catalysts. MEA assembly and testing.

Dalhousie – Task 1 and 2. Composition spreads via sputter deposition; *ex situ* characterization; 64-electrode fuel cell testing; RRDE on NSTF grown on GC.

ORNL – All tasks. Structural and compositional TEM characterization, before and after testing.

MILESTONES AND GO/NO-GO DECISION

Until DOE targets for this topic are established, the milestones are defined upon the following project goals:

Milestone #1: **OER** of 1 mA/cm² at 1.45 V; 10 mA/cm² at 1.5 V; PGM: $2 \mu g/cm^2$.

Milestone #2: **OER** of 1 mA/cm² at **1.42 V**; **20 mA/cm²** at 1.5 V; PGM: **1.5 µg/cm²**.

Anode ORR current reduced by a factor of 2.

Demonstrated ORR and HOR performance with integrated catalyst will be substantially the same as the base-line NSTF catalyst.

Go/No-Go: OER of 1 mA/cm² at 1.40 V; 100 mA/cm² at 1.5 V; PGM: 1 μ g/cm².

Anode ORR current reduced by a factor of 5.

Integrated catalyst system meets DOE metrics for durability, performance and PGM loading demonstrated by 50-cm² FC testing.

Milestone #3: Short stack for delivery to DOE designated site for testing.

Reviewers' comments

The idea of adding low surface-coverage nanoscale OER catalyst particles to a high specific activity ORR catalyst to enhance OER reactions without compromising the ORR activity (Concept #1) is intriguing. However, retention of separate OER and ORR catalyst functions in such a structure over multiple reaction cycles assumes that the OER catalyst nanoparticles and ORR catalyst layers remain chemically and structurally distinct during cycling. Given the demanding electrochemical reaction conditions, the small size of the OER particles as well as their tendency to migrate and coalesce, and the nature of the contact between the OER particles and the ORR catalyst layer, this assumption seems highly speculative and may be a risk factor underlying the viability of Concept #1.

This comment addresses a potential problem common to many small particle systems. Based on our own and others literature data, the catalysts material itself, RuO_2/TiO_2 , lasts for many thousands of hours in industrial environment. RuO_2 is not soluble in water unless for extended period of time the potential reaches very positive values. Furthermore, unlike the weak van der Waals forces that are holding Pt nanoparticles to carbon, the oxides will be anchored more strongly to the substrate.