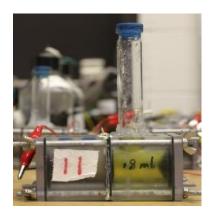
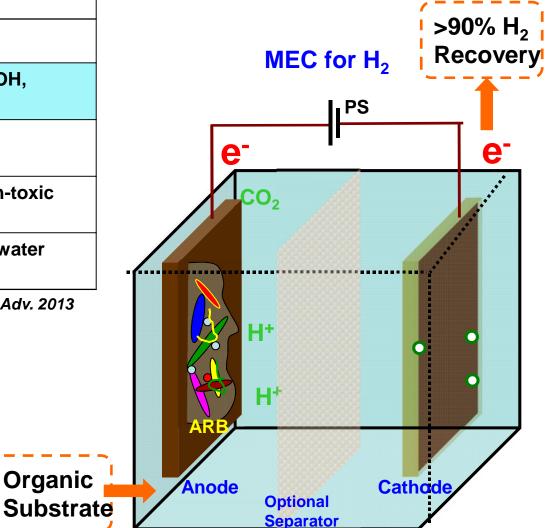

### Microbial Electrolysis Cells (MECs) for High Yield H<sub>2</sub> Production from Biodegradable Materials

Zhiyong "Jason" Ren, Ph.D

Associate Professor, Environmental and Sustainability Engineering University of Colorado Boulder

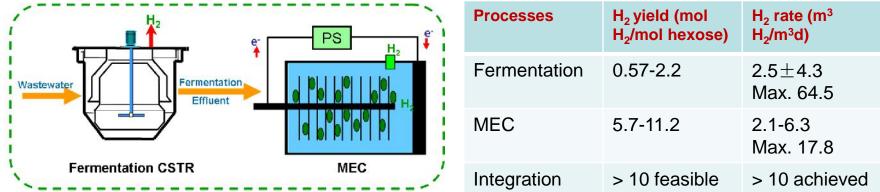
Jason.Ren@colorado.edu (303) 492-4137 http://spot.colorado.edu/~zhre0706/



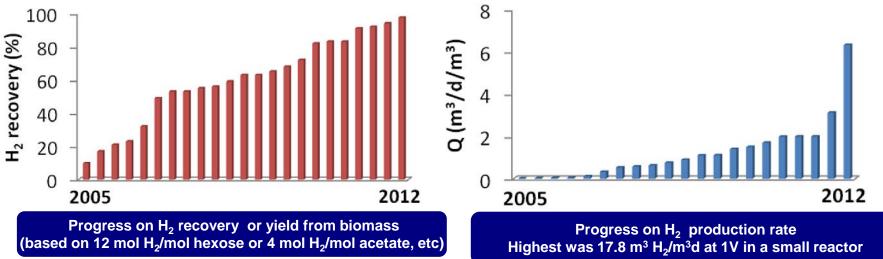




# MxC or Microbial Electrochemical System (MES) is a platform technology for energy and resource recovery

| Main type of MXC                     | Products                                                                     |
|--------------------------------------|------------------------------------------------------------------------------|
| Microbial Fuel Cell (MFC)            | Electricity                                                                  |
| Microbial Electrolysis<br>Cell (MEC) | H <sub>2</sub> , H <sub>2</sub> O <sub>2</sub> , NaOH,<br>Struvite           |
| Microbial Chemical Cell<br>(MCC)     | CH <sub>4</sub> , C <sub>2</sub> H <sub>4</sub> O <sub>2</sub> ,<br>Organics |
| Microbial Remediation<br>Cell (MRC)  | Reduced/non-toxic chemicals                                                  |
| Microbial Desalination<br>Cell (MDC) | Desalinated water                                                            |


Wang and Ren, Biotechnol. Adv. 2013



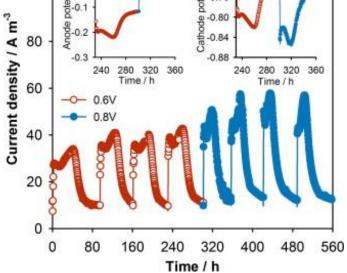



### **MEC for H<sub>2</sub> production – Features and Current Status**

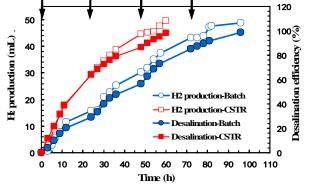
- 1. Any biodegradable material theoretically can be used in MECs for H<sub>2</sub> production
  - Cellulosic biomass, fermentation products, wastewater, etc.



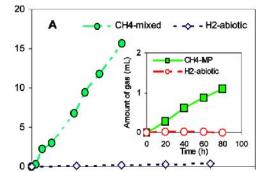
#### 2. The H<sub>2</sub> yield is higher than dark fermentation, and the rate is getting faster




Ren, et al., 2007; Logan, et al., 2008; Lu, et al., 2009; Lalaurette, et al, 2009; Tartakovsky, et al, 2009; Lee, et al., 2010; Liu, et al, 2010; Lu, et al, 2011; Cheng and Logan, 2011; Chookaew et al., 2013


### **MEC for H<sub>2</sub> production – Features and Current Status**

### 3. H<sub>2</sub> purity from MEC can be high, and the production can continue in low temperature (> 4 °C)


- In two chamber MECs, the  $H_2$  content can be > 99% when using a good separator.
- In single chamber MECs, H<sub>2</sub> is mixed with CO<sub>2</sub>
- MECs can be operated at low temperature without significant performance drop, but methanogenesis can be effectively inhibited.



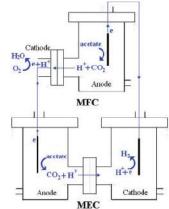
## 4. MEC can be integrated with other processes, and $H_2$ can be either directly harvested or used *in situ* for organic generation.



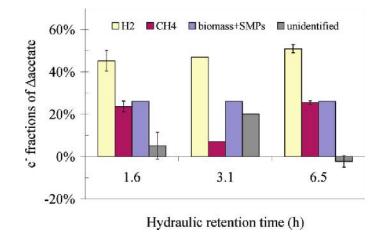
Simultaneous  $H_2$  production (2 m<sup>3</sup>/m<sup>3</sup> d), waste removal (90%), and Desalination (99%) - Energy Positive System



CH<sub>4</sub> and other organics can be produced through H<sub>2</sub> oxidation


Cheng, et al, 2009; Luo, et al., 2011; Lu, et al., 2012;

### **MEC** for H<sub>2</sub> production – Challenges and Opportunities


1. Despite it's energy positive nature, an external power source is needed for MECs, and many renewable sources have been used.



Renewable power sources, such as microbial fuel cell, salinity gradient, waste heat, etc. have been used to provide the additional potential for  $H_2$  production in MECs.



2. H<sub>2</sub> consumption by methanogenesis, ARB H<sub>2</sub> recycle, and other undesired electron sinks in single chamber MECs



Removing the membrane from MECs attenuates pH and ohmic energy loss, therefore increasing production rate. However, it also makes  $H_2$  available for anode microbes to consume, decreasing  $H_2$  yield.

Sun, et al., 2008; Lee, et al., 2010; Nam, et al, 2012

### **MEC** for H<sub>2</sub> production – R&D Needs

- 1. Develop new materials and reactor configurations to increase H<sub>2</sub> production rate and reduce system and operational costs.
- 2. Explore microbial and engineering approaches to reduce/remove competitive  $H_2$  consumption and increase  $H_2$  harvesting rate or utilization.

### 3. System scale up and integration with other complementary processes.



An 1000 L pilot MEC reactor treating winery wastewater and producing H<sub>2</sub>

One study estimates a break-even point of 7 years for a full-scale MEC wastewater systems, with the following assumptions:

- Current density of 5 A/m<sup>2</sup>
- Energy consumption of 0.9 kWh/kg-COD
- A cost of €1220/m³ anode chamber

Cusick, et al, 2011; Escapa, et al, 2012