Engineered Nano-scale Ceramic Supports for PEM Fuel Cells

Eric L. Brosha, Anthony Burrell, Neil Henson, Jonathan Phillips, and Tommy Rockward

Los Alamos National Laboratory

Timothy Ward, Plamen Atanassov

University of New Mexico

Karren More

Oak Ridge National Laboratory

Fuel Cell Technologies Program Kick-off Meeting

September 30 – October 1, 2009

Washington DC

Fuel Cell Technologies

Operated by Los Alamos National Security, LLC for NNSA

Objectives

 Develop a ceramic alternative to carbon material supports for a polymer electrolyte fuel cell cathode that exhibits an enhanced resistance to corrosion and Pt coalescence while preserving positive attributes of carbon such as cost, surface area, conductivity, and a compatibility with present MEA architecture/preparation.

Goals...

- high Pt utilization
- enhanced Pt support interaction
- high surface area
- adequate electronic conductivity
- resistance to corrosion
- synthesis method designed for scale-up

Operated by Los Alamos National Security, LLC for NNSA

Technical Targets and Barriers

DOE Technical Targets^{1,*}

•	Precious metal loading:	~0.25 mg/cm ² (with ~ 0.05 mg/cm ² anode)	
	Cost:	< 5\$/kW	
	Activity (precious-metal based catalyst):	0.44 A/mg _{Pt} @ 0.90 V _{iR-free}	
		720 µA/cm² @ 0.90 V _{iR-free}	
•	Electrocatalysis support loss:	<30 mV after 100 hrs @1.2V	
•	Electrochemical surface area (ESA) loss:	<40%	

Technical Barriers Addressed^{2,*}

- Durability (Pt sintering, dissolution, corrosion loss, effects from load-cycling & high potential) Α.
- Cost (Better Pt utilization balanced by cost difference of new support) Β.
- Electrode Performance (Pt sintering, corrosion loss, and loss of ESA) C.

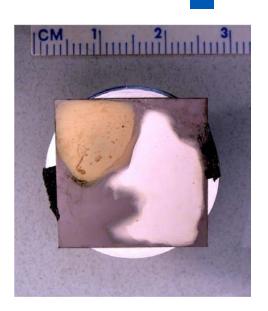
1. (Multi-Year Research, Development and Demonstration Plan, Table 3.4.12)

2. (Multi-Year Research, Development and Demonstration Plan, Section 3.4.4 "Technical Challenges")

*From http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf

Fuel Cell Technologies

Operated by Los Alamos National Security, LLC for NNSA


Approach

- This Project: a focus on 3 ceramic materials as possible supports
- Rare-earth Hexaborides
 - Low work function material
 - Refractory withstand high temperatures
 - Insoluble in acid media
 - Present use: abrasives and thermionic emitters
- Sub-stoichiometric titania (TiO_{2-x}) : Ti₄O₇ (Magnéli phase)
 - Bulk e⁻ conductivity exceeds graphitized carbon
 - Reports of strong metal-support interactions with noble metals
 - High resistances to dissolution in acid media
 - Resistance to oxidation
 - Demonstrated electro-catalytic activity for both hydrogen and oxygen / Pt
- Conductive metal oxides : NbO₂ and RuO₂ (UNM)
 - Demonstrated corrosion stability (UNM)
 - Highly dispersed Pt on conductive mesoporous spheres can be synthesized in a single step process (UNM)

Approach/Relevant Prior Work

Metal hexaborides spontaneously deposit noble metals from solution.

Pt, Au, Pd, Os, Ag, Ru, Rh, Ir onto Ca, Ce, Eu, Gd, La, and YB₆

F.A. Uribe, F.H. Garzon, E.L. Brosha, C.M. Johnston, S.D. Conradson, and M.S. Wilson, J. Electrochem. Soc. **154** (11) (2007) D623.

Fuel Cell Technologies

400

200

0

-200

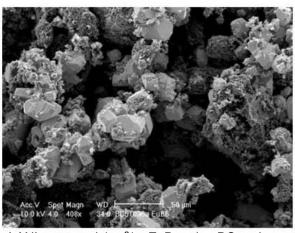
-400

-600

0.2 0.4 0.6

Potential / V vs. RHE

0.8


1

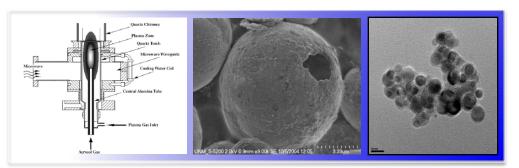
Current density / µA-cm⁻²

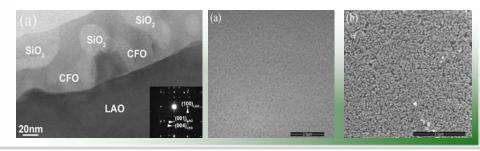
1.2

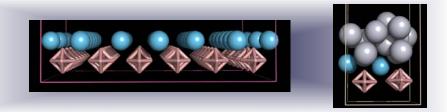
CV performed on 4 wt% Pt/EuB₆ powder-coated electrode with $6\mu g$ Pt/cm² loading immersed in 0.5M H₂SO₄, sparged with Ar.

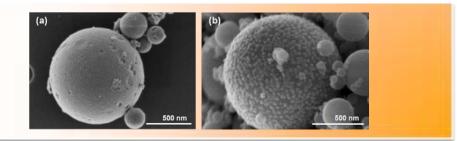
9 19

Glassy carbon disk electrodes: bare, coated with YB₆, and after spontaneous deposition of Au.


LANL prepared 1 $m^2/gr~EuB_6$ using BC and Eu-acetate, 6hr @ 1500°C/H_2 .




Operated by Los Alamos National Security, LLC for NNSA


Approach

- Microwave aerosol-through-plasma (ATP) torch synthesis of (RE)B₆ and TiO_{2-x}
 - Utilize flow of plasma gas through plasma to create high temperature/short contact times
 - T > 3500K, t < 0.1 sec
 - Plasma gas mixtures: Air, Ar, O_2 , N_2 and H_2
- Polymer assisted deposition (PAD) for (RE)B₆
 - PAD precursor routes to produce catalysts supports.
 - Films (CVs), powders (bulk catalysts, MEA prep)
 - Methods developed to generate surface area have been demonstrated.
- Theory/Modeling support to aid experimental effort to provide data on stability in absence of Pt particles
 - Surface/cluster models useful to predict effects of particle size reduction, conductivity.
 - Study nature of Pt binding sites, interaction energy, etc.
- Conductive NbO₂ and RuO₂ supports (UNM)
 - Spray pyrolysis methods to prepared conductive metal oxide supports.

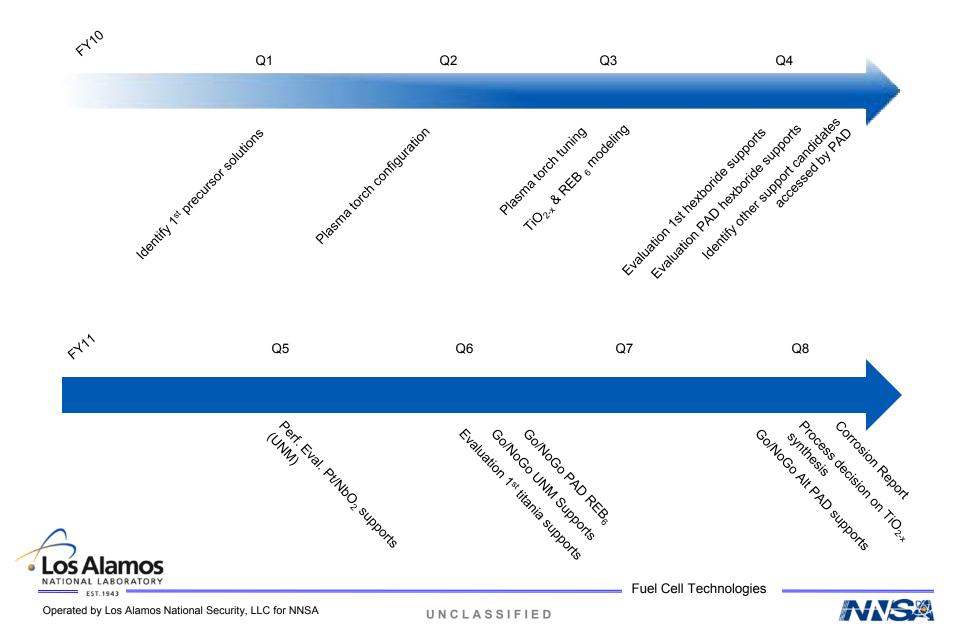
Fuel Cell Technologies

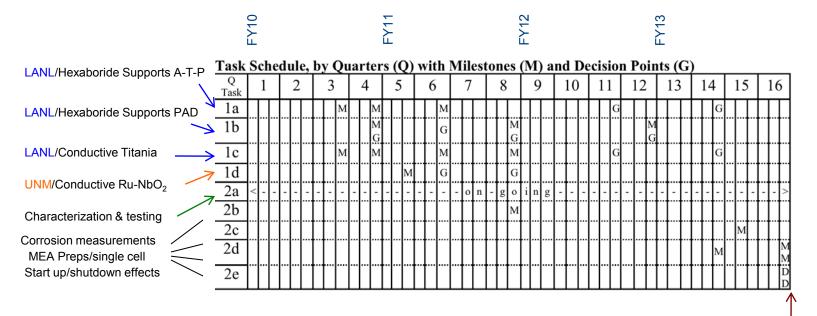
Operated by Los Alamos National Security, LLC for NNSA

Participating Organizations/Task Leads

- > Rare earth hexa-boride supports; Eric Brosha (PI) & Jonathan Phillips
- > Sub-stoichiometric TiO_{2-x} supports; Jonathan Phillips
- > PAD synthesis, hexa-boride films, powder supports; Anthony Burrell
- Electrochemistry/MEA prep/FC testing; Tommy Rockward
- Support Modeling; Neil Hensen

Conductive RuO₂ and NbO₂ Supports; Timothy Ward (lead)


Characterization; Karren More (PI – special materials)


Operated by Los Alamos National Security, LLC for NNSA

Project Timeline

Milestones & Go / No-Go Decisions / Criteria

- Criteria used to judge G/NG decision points
 - Particle size, surface area, conductivity
 - Pt support interaction, activity
 - Corrosion studies
 - Modeling input
 - MEA fabrication

Operated by Los Alamos National Security, LLC for NNSA

Deliver single cell for testing/formal cost estimate

Extensive Support Materials Characterization

- X-ray diffraction (XRD structure, phase identification/analysis, particle size)
- X-ray fluorescence (XRF *composition, stoichiometry*)
- X-ray general (EDS *composition, mapping*)
- Thermogravimetic Analysis (TGA *solution properties, thermal stability*)
- Microscopy (SEM, ESEM, TEM structure, morphology)
- Surface Area (BET)
- Cyclic voltammetry, micro-electrode (*activity, corrosion testing*)
- Spectroscopy (ICP-MS *corrosion studies*)

Operated by Los Alamos National Security, LLC for NNSA

	FY10	FY11	FY12	FY13
LANL	\$500K	\$500K	\$500K	\$500K
UNM (subawardee)	\$75K	\$75K	\$75K	\$75K

Project total: \$2M

Operated by Los Alamos National Security, LLC for NNSA

Fuel Cell Technologies

