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NOMENCLATURE 

A = 
C  = 

=Ceqv 

= 
CNaH  = 

=CNaAlH4

Cnd = 

=Cp 

C = p metal 

C1  = 

C2  = 

C3  = 


C1 0  = 

C2 0  = 

C3 0  = 

D = 
Dcool = 

Dp = 
=DH2 

=Dcool _ outer 

f = 
G = 

=G H2

g  = 
h = 

h  = conv cool 

h f  = 
=h H2 cool

ι= 
k = 

k f  = 
=k metal

L = 

Surface area [m2] 

Concentration of H2 [mol H2/m3 of interparticle void] 

Equivalent concentration of NaAlH4 [moles/m3] based on the initial 

concentrations of all metal species 
C + 3C + C10 20 30 

The bulk concentration of NaH [mol NaH/m3] 
The bulk concentration of NaAlH4 [mol NaAlH4/m3] 

CThe non-dimensionalized concentration of H2 = 
Cref 

Specific heat of coolant [J/(kg- K)] 
Specific heat of the metal [J/(kg-K)] 

Concentration of NaAlH4 [moles/m3] 
Concentration of Na3AlH6 [moles/m3] 
Concentration of NaH [moles/m3] 
Initial concentration of NaAlH4 [moles/m3] 
Initial concentration of Na3AlH6 [moles/m3] 
Initial concentration of NaH [moles/m3] 
Inner diameter of coolant tube [m] 

Inner diameter of coolant tube [m] 

Mean diameter of particles in bed [m] 

Diameter hydrogen feed tube [m] 

Outer diameter of coolant tube, including sleeve formed by extrusion of 

fin [m]. 

Friction factor 

Mass flux [kg/m2-s] 

Hydrogen gravimetric density [(Mass H2)/(Mass NaAlH4 From NaH)] 


Gravitational acceleration vector [m/s2] 

Specific enthalpy [J/kg] 

Convection heat transfer coefficient for heat transfer fluid [W/m2- K] 

Convection heat transfer coefficient for the heat transfer fluid [W/(m2- K)] 

Convection heat transfer coefficient for H2 in the feed tube [W/m2- K] 

Specific internal energy [J/kg] 

Thermal conductivity of the metal hydride bed [W/(m-K)] 

Thermal conductivity of the heat transfer fluid [W/(m- K)] 

Thermal conductivity of the metal [W/(m-s)]. 

Characteristic length [m]. 
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mH2
 = Mass of recoverable hydrogen sorbed in the bed [kg] 

msystem = Total mass of loaded storage tank, including the bed loaded with H2, 
fins, liner gaps and pressure vessel.  The mass of the heat transfer fluid 
is not included. 

P = Pressure [Pa] 
Mi  = Molecular weight of species i per mole [kg/g-mole] 

M H2
 = Gram molecular weight of H2  [kg/g-mol] = 0.002016 kg/g-mole 

M NaH  = Gram molecular weight of NaH [kg/g-mol] 
M NaAlH4

 = Gram molecular weight of NaAlH4 [kg/g-mol] = 0.054 kg/g-mole 
M Na3AlH  = Gram molecular weight of Na3AlH66 

n̂  = Outward normal to surface 

= Number of moles of NaH 
n NaH

 = Number of moles of NaAlH4n NaAlH4

 = Number of moles of Na3AlH6n Na3AlH6 

n H2 
= Total number hydrogen feed tubes 

hDNu D  =  = Nusselt number based on diameter, D 
k
 

P = Pressure [Pa] 

P
P  =  = Non-dimensional pressurend
 Pref
 

Pref  = Reference pressure [Pa] 
ν Pr =  = Prandtl number 
α r

q" = Heat flux vector [W/m2] 

q” = Heat flux [W/m2] 

R = Gas constant 


GD
ReD =  = Reynolds number based on diameter, D 
µ 

S = Arc length [m] 
H2 

Rate of H2 generation per volume of bed from all chemical reactions S  =  
[mol H2/(m3 - s)], 

SH2 

> 0 if H2 is produced 

SH2 

< 0 if H2 is removed 
S1 = The arc length of tubes in contact with coolant, lying within area A1 [m] 
S2 = The arc length of tubes in contact with coolant, lying within area A2 [m] 

Tcoolant bulk  = Bulk temperature of the heat transfer fluid [K] 
TT  =   = Non-dimensional temperature nd
 Tref
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TH2 bulk  = Bulk temperature of the H2 in the feed tube [K] 
Tref  = Reference temperature [K] 
Twall = Tube wall temperature [K] 

V = Volume [m3] 

Vsystem  = Total volume of storage tank, including the bed, fins, liner gaps and 


pressure vessel [m3]. 

v  =  H2 velocity [m/s] 
u = x component of the velocity, v  [m/s] 
  

u
u  =   = Non-dimensional x-component of velocity nd
 Uref
 

Uref  = Reference velocity [m/s] 

v = y component of the velocity, v  [m/s] 
  
v
v  =   = Non-dimensional y-component of velocity nd
 Uref
 

Vsystem  = 	 Total volume of storage tank, including the bed, fins, liner gaps and 
pressure vessel [m3] 

w = z component of the velocity, v  [m/s] 
  
w
w  =   = Non-dimensional z-component of velocity nd
 Uref
 

Greek 
α = Thermal diffusivity of coolant [m2/s].
 

∆CH2
 = Change in the concentration of H2 [mole/m3] 


∆CNaAlH4	
 = Change in the concentration of NaAlH4 [mole/m3] 

∆Hi  = Enthalpy of reaction on a molar basis of species i [J/(mol of i)] 
∆H rx = Overall heat of reaction for uptake of H2 by the hydride [J/g-mol]. 

∆H  = Heat of per mole of H2 consumed going to left for reaction 1 rxn 1 

= -37 kJ/(mol H2) 

∆H  = Heat of per mole of H2 consumed going to left for reaction 2 
rxn 2 

= -47 kJ/(mol H2) 
∆n H2

 = Number of moles of H2 consumed in going form NaH to NaAlH4 [mole] 
∆n NaAlH4	

 = Number of moles of NaAlH4 produced from NaH [mole] 
∆P  = Pressure drop across the length of the tube [Pa] 

∆T  = Change in bulk temperature of coolant over the heated length of the 


cooling tube [°C] 

ε  = Void between particles in bed 

ν = Kinematic viscosity of coolant [m2/s]
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ρ = Mass density [kg/m3] 

ρ i = Mass density of species i [kg/m3] 


ρ  = Density of the metal [kg/m3].
metal 

µ = Viscosity [Pa-s] 

τ = Stress tensor, having components τ ij  [N/m2] 

τ = Time required for H2 loading [s]. 

Symbols and Operators 
νH2 = Ratio of the stoichiometric coefficient of H2 to NaH in reaction 2 = 0.5 
νNaH Rxn2 

νH2 = Ratio of the stoichiometric coefficient of H2 to NaAlH4 in reaction 1 = 1 
νNaAlH4 Rxn1 

( )H2
 = For H2 gas 

( )R  = For solid phase reactants
 

( )P  = For solid phase products 

( )I  = For inert (non-reacting) material, such as metal foam
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1.0 EXECUTIVE SUMMARY 
It is recognized that detailed models of proposed hydrogen storage systems are essential 
to gain insight into the complex processes occurring during the charging and discharging 
processes.  Such insight is an invaluable asset for both assessing the viability of a 
particular system and/or for improving its design.  The detailed models, however, require 
time to develop and run.  Clearly, it is much more efficient to begin a modeling effort 
with a good system design and to progress from that point.  To facilitate this approach, it 
is useful to have simplified models that can quickly estimate optimal loading and 
discharge kinetics, effective hydrogen capacities, system dimensions and heat removal 
requirements.  Parameters obtained from these models can then be input to the detailed 
models to obtain an accurate assessment of system performance that includes more 
complete integration of the physical processes.   

This report describes three scoping models that assess preliminary system design prior to 
invoking a more detailed finite element analysis.  The three models address the kinetics, 
the scaling and heat removal parameters of the system, respectively.  The kinetics model 
is used to evaluate the effect of temperature and hydrogen pressure on the loading and 
discharge kinetics. As part of the kinetics calculations, the model also determines the 
mass of stored hydrogen per mass of hydride (in a particular reference form).  As such, 
the model can determine the optimal loading and discharge rates for a particular hydride 
and the maximum achievable loading (over an infinite period of time).  The kinetics 
model developed with the Mathcad® solver, runs in a mater of seconds and can quickly 
be used to identify the optimal temperature and pressure for either the loading or 
discharge processes. The geometry scoping model is used to calculate the size of the 
system, the optimal placement of heat transfer elements, and the gravimetric and 
volumetric capacities for a particular geometric configuration and hydride.  This scoping 
model is developed in Microsoft Excel® and inputs the mass of hydrogen to be stored, 
mass of stored hydrogen to mass of hydride (from the kinetics model), component 
densities, etc. The heat removal scoping model is used to calculate coolant flowrates, 
pressure drops and temperature increases over the length of the cooling channels.  The 
model also calculates the convection heat transfer coefficient required to remove the heat 
of reaction associated with hydrogen uptake.  The heat removal model inputs dimensions 
and the mass of hydrogen to be stored directly from the geometry scoping model.  
Additionally, the model inputs the heats of reaction, the thermal properties of the coolant 
and the time required to charge the bed.   
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2.0 INTRODUCTION 
Detailed models for hydrogen storage systems provide essential information about flow 
and temperature distributions and the utilization of the bed.  However, before 
constructing a detailed model it is necessary to know the geometry and dimensions of the 
system, along with its heat transfer requirements, which depend on the limiting reaction 
kinetics. This document describes scoping models that were developed to estimate 
system dimensions required to store a given mass of hydrogen, determine coolant 
flowrates and temperatures required to remove heat generated by uptake or discharge 
reactions, evaluate the reaction kinetics models and, within the context of these models, 
determine limiting bed loading rates. 

The system of scoping models is general and can be applied to any storage material and 
bed configuration. In this document, the system of models are applied to TiCl3 catalyzed 
NaAlH4 storage media in a cylindrical shell and tube storage configuration that has 
axially spaced fins, that extend in the radial direction; similar to that in Figure 2.0-1.  
Additionally, the kinetics scoping model is applied to α-AlH3. 

Figure 2.0-1 	 Illustration of a shell, tube and fin hydride bed configuration developed by 
the United Technologies Research Center™, East Hartford, Connecticut.   

3.0 CHEMICAL KINETICS SCOPING MODEL 
The effect of chemical kinetics on the hydrogen loading and discharge rates from a 
particular hydrogen storage material are evaluated using the chemical kinetics scoping 
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model, which is based on the Mathcad®, version 14.0.0.163, software. The model, which 
considers the dependence of reaction kinetics on temperature and pressure, is used to 
identify potential discrepancies in kinetics data, predict loading rates, and determine the 
gravimetric and volumetric capacities of the bed. 

The equations governing reaction rates for hydrogen with the metal hydrides are 
dependent on the hydride and its reaction mechanism.  In this document, the reactions for 
hydrogen uptake by TiCl3 catalyzed sodium alanate, NaAlH4, and by alpha aluminum 
hydride, α-AlH3, are specifically addressed in Sections 3.1 and 3.2.  The Mathcad® based 
model, however, may be applied to any metal hydride once its kinetics have been 
characterized. 

3.1 Sodium Aluminum Hydride Reaction 
The United Technologies Research Center™ (UTRC) developed an empirical kinetics 
model for hydrogen uptake and discharge reactions in TiCl3 catalyzed NaAlH4, see 
Attachments 3 and 4.  The chemical balance equation for the reaction is 

1 2	 3 
4 { Na AlH6 + Al + H ↔{ NaH + Al + H2	 3.1-1NaAlH ↔	 2 {14243 3 3 3	 2Re action1 14243 Re action 2 Species 3Species1
 

Species 2
 

To use the UTRC kinetics model, define the expressions: 
⎡ E1F ⎤⎡P(C,T)− Peq1 (T)⎤ 

r1F ≡ CeqvA1F exp⎢− ⎥⎢ ⎥ 3.1-2a 
⎣ RT ⎦⎢ Peq1 ( )  ⎥T⎣	 ⎦ 

⎡ E1B ⎤⎡P ( )− P(C,T)⎤eq1 T 
r1B ≡ −CeqvA1B exp	⎢− ⎥⎢ ⎥ 3.1-2b 

⎣ RT ⎦⎢ Peq1 ( )T ⎥⎣	 ⎦ 

⎡ E ⎤⎡P(C,T)− Peq2 (T)⎤ 
r2F ≡ −CeqvA2F exp⎢− 

RT
2F 

⎥⎢ P ( )T ⎥ 3.1-2c 
⎣ ⎦⎣⎢ eq2 ⎦⎥ 

⎡ E ⎤⎡ ( ) 	  P(C,T)
2B P T − ⎤ 

r ≡ CeqvA exp − ⎢ 
eq2 

⎥ 3.1-2d2B 2B 
⎣⎢ RT ⎦⎥⎢⎣ Peq2 ( )T ⎥⎦ 

where: r1F = Hydriding (forward) reaction rate coefficient  
for reaction 1 [mole/(m3 s)], see Eq. 3.1-1 

r1B = Deydriding (backward) reaction rate coefficient  
for reaction 1 [mole/(m3 s)], see Eq. 3.1-1 

r2F = Hydriding (forward) reaction rate coefficient  
for reaction 2 [mole/(m3 s)], see Eq. 3.1-1 

r2B = Deydriding (backward) reaction rate coefficient  
for reaction 2 [mole/(m3 s)], see Eq. 3.1-1 

C  = Concentration of H2 [mole/m3] 

3 
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Ceqv = Equivalent concentration of NaAlH4 [mole/m3] based on the initial 
concentrations of all metal species 

= C + 3C + C10 20 30 

C1 0  = Initial concentration of NaAlH4 [mole/m3] 

C2 0  = Initial concentration of Na3AlH6 [mole/m3] 

C3 0  = Initial concentration of NaH [mole/m3] 


Peq1(T) and Peq2 (T) are the H2 pressures, in Pa, in equilibrium with the NaAlH4 and the 
Na3AlH6 metal hydrides, respectively, at temperature T, in [K].  These equilibrium 
pressures are given by the van’t Hoff equations: 

⎡∆H ∆S ⎤5 4 4Peq1 (T) = 10 exp − 3.1-3a⎢⎣ RT R ⎥⎦ 

⎡∆H ∆S ⎤5 2 2Peq2 (T) = 10 exp − 3.1-3b⎢⎣ RT R ⎥⎦ 

Values for the constants used in Eqs. 3.1-2a-d, and 3.1-3a-b are listed in Table 3.1-1 

Table 3.1-1 
Constants for the Rate and Equilibrium Expressions 

Constant Value 
A1F 10 8 

A1B 10 54 × 
A2F 1051.5 × 
A2B 10126 × 
E1F 80.0 kJ/mol 
E1B 110.0 kJ/mol 
E2F 70.0 kJ/mol 
E2B 110.0 kJ/mol 
χ1F 2.0 

χ1B 2.0 

χ 2F 1.0 

χ2B 1.0 

R 
H1∆ 

-4475 

R 
S1∆ 

-14.83 

R 
H 2∆ 

-6150 

R 
S2∆ 

-16.22 

4 
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The reference for this model, contained in Attachment A-1, proposes the kinetics 
equations 

3C2 (t) 
1F

r1F C2sat (T) if P Peq1 (T)
dC1 

Ceqv 

dt C1(t) 
1B 

r1B if P Peq1 (T) and C1(t) 0 
Ceqv 

≥ 

≥ 

< 

χ
⎤ 
⎥
⎥⎦

− 

χ
⎤ 
⎥
⎥⎦

⎡ 
⎢
⎢⎣
⎡ 
⎢
⎢⎣


⎧
⎪
⎪
⎨
⎪
⎪
⎩


= 3.1-4a 

and 

≥ 

2F
C ( )t3 ≥ 

if P P (T) and C ( ) 0tr2B 2 2eq

r2F C3sat (T) if P Peq2 (T)
dC3 Ceqv 

dt 3C2 (t) 
2B 

Ceqv 

< 

χ
⎤ 
⎥
⎥⎦

χ
⎤ 
⎥
⎥⎦

− 
⎡ 
⎢
⎢⎣
⎡ 
⎢
⎢⎣


⎧
⎪
⎪
⎨
⎪
⎪
⎩


= 3.1-4b 

By Eq. 3.1-1 
dC2 1 dC1 dC3= − 
dt 3 dt dt 

⎞
⎟
⎠

+⎛
⎜
⎝

 or ]
)
−+−(
[
−=
1C C C C ) (C C2 2 0 1 1 0 3 3 03 

3.1-4c 

where: 	 C1  = Concentration of NaAlH4 [mole/m3] 
C2  = Concentration of Na3AlH6 [mole/m3] 
C3  = Concentration of NaH [mole/m3] 

Based on data for the loading of NaH, expressions for C (T) and C (T) , in2 sat 3 sat 

[mole/m3], were estimated by UTRC in Attachment 1 as 
C (T)
 0
=
 2 sat

⎛
⎜ 
⎝
⎜1
−
 

satwfiso (T) 
0.056
 

⎞
⎟ 
⎠
⎟C (T)
=
rsat3 sat 

⎡ 
⎢
⎢⎣


⎤
⎛
⎜ 
⎝

Max 1, 1⎜

wf satThe values for iso (T) , the saturation hydrogen weight fraction for loading at a fixed 
temperature T, are listed in Table 3.1-2.  Both the Mathcad® kinetics scoping model, and 
the COMSOL® two and three-dimensional system models, Hardy [2007], use a spline fit 
to this data with extrapolated values fixed at the endpoints.  

5 

⎞
⎟ 
⎠
⎟

0.0373
where: −
 ⎥
⎥⎦


r  =sat sat0.056
−
wf (T)
iso

 3.1-5 

 3.1-6 
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Table 3.1-2 
wf satValues for iso (T) 

T (K) (T)wf sat 
iso 

353.15 0.021 
363.15 0.023 
373.15 0.029 
393.15 0.022 
413.15 0.018 

The weight fraction of H2 contained in the sodium alanate metal, based on Eq. 3.1-1, is 
defined as 

Massof H2 in Metal
wf =

Equivalent Mass of NaAlH4


(1.5n + 0.5n )M
NaAlH	 Na AlH H4 3 6 2=	 3.1-7 
n M + 3n M + n MNaAlH NaALH Na AlH Na AlH NaH NaH4 4 3 6 3 6 

1.5C + 0.5C M H1 2 2= 
C Meqv NaAlH4 

where: = Number of moles of NaAlH4n NaAlH4

 = Number of moles of Na3AlH6n Na3AlH6 

= Number of moles of NaH n NaH

M NaAlH4
 = Gram molecular weight of NaAlH4 [kg/g-mole] 

M Na3AlH  = Gram molecular weight of Na3AlH6 [kg/g-mole] 
6 

M NaH  = Gram molecular weight of NaH [kg/g-mole] 
M H2

 = Gram molecular weight of H2 [kg/g-mole]. 

3.2 Alpha Aluminum Hydride Reaction 
The reaction kinetics model for discharge of hydrogen from α-AlH3 is based on Graetz 
and Reilly [2005].  Data was used to fit the constants Ea and A in the reaction rate k(T), 
which is given by 

⎛ Ea ⎞k( )T = A exp	⎜− ⎟ 3.2-1 
⎝ RT ⎠ 

where: A = Constant [1/s] 
JR = Gas constant = 8.314
 

mol K
 

Ea = Activation energy [J/mol] 

T = Temperature [K]. 
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The rate of decomposition of α-AlH3 is obtained in terms of the fractional 
decomposition, α, where 

n − n ( )tAlH 0 AlH≡α 3 3	 3.2-2 
n AlH 03 

So that, 
dα d ⎡n AlH3 0 − n AlH3 

( )t ⎤ d ⎡n AlH3 
(t)⎤ 

≡ ⎢ ⎥ = − ⎢ ⎥ 3.2-3
dt dt ⎢ n AlH 0 ⎥ dt ⎢ n AlH 0 ⎥3⎣ 3 ⎦ ⎣ ⎦ 

where: n AlH3 0 = Initial number of moles of AlH3 

n AlH3
( )t = Number of moles of AlH3 at time t. 

α is expressed as 
α = 1− exp(− Bt n ) 3.2-4 

where: k(T) ≡ B1 / n  or B = k(T)n	 3.2-5 

Then, from Equations 3.2-4 and 3.2-5 
α = 1− exp(− [k( )T t]n ) 3.2-6 

10 −1Graetz and Reilly found that n ≈ 2 and for α-AlH3, A = 1.2 ×10 (s ) 
and Ea = 102.2 ×103 J / mol . 

Hence, from Equations 3.2-3 and 3.2-6 
d	 2 2n ( ) = 2n ( )  ) − k T t) ]	 3.2-7t (k T t exp[ ( ( )AlH AlH 0dt 3 3 

Equation 3.2-1, along with the values for A and Ea, is used to provide an explicit 
expression for k(T). 

4.0 	DESCRIPTION OF GEOMETRY AND HEAT REMOVAL 
SCOPING MODEL 

The size of a hydrogen storage system, the location of particular components and it 
gravimetric and volumetric capacities are calculated with the geometry scoping model.  
Operating parameters for the heat removal system are calculated with the heat removal 
parameter scoping model.  The heat transfer scoping model inputs data from the 
geometry scoping model and is therefore run afterwards.  Although the two scoping 
models are distinct, they are both incorporated in to the same Microsoft Excel® 
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workbook, using the workbook format to transfer necessary data from the geometry 
scoping model to the heat transfer scoping model.   

4.1 Geometry Scoping Model 
The storage system modeled in this report consists of a cylindrical bed with a circular 
array of axial coolant tubes and a central axial coolant tube, see Figure 4.1.1-1.  Fins used 
to enhance heat transfer, are positioned normal to the vessel axis.  The arrangement of 
fins is similar to that of the UTRC™ storage vessel shown in Figure 2.0-1.  The storage 
media (TiCl3 catalyzed NaAlH4) is layered between the fins. Hydrogen is assumed to be 
introduced to the bed by a circular array of axial tubes that could be filled with an inert 
porous metal.  The pressure vessel wall is assumed to have a cylindrical midsection with 
hemispherical end caps. 

4.1.1 Radius of Outer Coolant Tube Ring 
Consider a cylindrical bed having a cross-sectional geometry similar to that in Figure 
4.1.1-1, but with a variable number of coolant and hydrogen feed tubes.  Figure 4.1.1-1 
represents a cross-section of the hydride bed only; the pressure vessel, liner and gaps are 
not included in the drawing. Area A1 [m2] in the figure represents the cross-sectional 
surface area extending from the center of the bed to the circle passing through the centers 
of the coolant tubes. Area A2 [m2] represents the area of the bed extending from the 
circle passing through the centers of the coolant tubes to the outer edge of the bed.   

Let 
S1 = The arc length of tubes in contact with coolant, lying within area A1. 
S2 = The arc length of tubes in contact with coolant, lying within area A2. 

To obtain similar rates of heat removal for the inner and outer volumes of the bed (which 
are the volumes formed by projecting areas A1 and A2 along the axis of the bed) it is 
desirable to have 
A1 A 2=  4.1.1-1
S1 S2 

Equation 4.1.1-1, which gives the radius, r of the ring of outer coolant tubes is equivalent 
to requiring the ratio of volume to cooled surface area to be the same for both regions.  
This can easily be seen by multiplying the numerator and denominator of both sides of 
the equation by the bed length, Lbed. 
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Coolant Tubes 
H2 Feed Tubes 

Area A2 

Area A1 

Figure 4.1.1-1 Schematic of bed cross-section.  The pressure vessel, liner and any gaps 
are not included. The number of coolant tubes and hydrogen feed tubes 
may vary. 

The arc lengths of the surfaces in contact with the coolant, S1 and S2, in [m],are 
calculated by considering the geometries shown in Figure 4.1.1-2 and Figure 4.1.1-3. 
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Center Coolant Tube Outer Coolant Tube 

Circle Through Center of 
Outer Coolant Tubes, 
Which Divides Areas A1 
and A2 

Coolant Tube Edge In Area A1 
Coolant Tube Edge In Area A2 

r 

r 

r 

Total Red Arc Length 
Over All Coolant Tubes is S2 

Total Blue Arc Length 
Over All Coolant Tubes is S1 

S is Arc Length of Edge of a 
Single Outer Coolant Tube 
Lying Within A1 

Isosceles Triangle 

Figure 4.1.1-2 Geometry for the partition of the cooled tube surface with respect to the 
inner and outer areas of the bed. Figure is not to scale. 

r 

a 

b 

c 
r 

θ/2 

Radius of Circle Through Center 
of Outer Coolant Tubes 

rcool = Inner Radius 
of Coolant Tube 

Figure 4.1.1-3 Schematic expansion of upper half of isosceles triangles formed by the 
center coolant tube and outer coolant tube, and within the outer coolant 
tube, see Figure 4.1.1-2. 
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From Figures 4.1.1-2 and 4.1.1-3 
2 2 2r = a + b 4.1.1-2 
2 2 2rcool = c + b 4.1.1-3 

r = a + c 4.1.1-4 

Solve for a from Equations 4.1.1-2 through 4.1.1-4 
2 − 22r rcoola =  4.1.1-5 
2r 

So, from Equation 4.1.1-2 
rcool 2 2b = (4r − rcool ) 4.1.1-6
2 

Now, θ (in radians), shown in Figure 4.1.1-3, is 
⎛ b ⎞ ⎛ 1 2 2 ⎞θ = 2arcsin⎜⎜ ⎟⎟ = 2arcsin⎜ (4r − rcool )⎟ 4.1.1-6 
⎝ rcool ⎠ ⎝ 2r ⎠ 

The arc length, S [m], of the edge of a single outer coolant tube lying within area A1, see 
Figure 4.1.1-2, is 

⎛ 1 2 2 ⎞S = r θ = 2r arcsin⎜
⎝ 2r 

(4r − r )⎟ 4.1.1-8cool cool cool 
⎠ 

The total arc length, S1 [m], of the edges of all coolant tubes lying within area A1 is 
S = (n −1)S + πD 4.1.1-91 cool cool 

The total arc length, S2 [m], of the edges of all coolant tubes lying within area A2 is 
S2 = (n cool −1)(  πDcool − S) 4.1.1-10 

where: ncool = Total number coolant tubes 
Dcool = Inner diameter of coolant tube [m]. 

The areas A1 and A2 are given by 
2 2 2
 

2 ⎛ Dcool _ outer ⎞ ⎛ DH2 ⎞ θ ⎛ Dcool _ outer ⎞

A1 = πr − π⎜⎜ ⎟⎟ − n H2 

π⎜⎜ ⎟⎟ − (n cool −1) ⎜⎜ ⎟⎟ 4.1.1-11 
2 2 2 2⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 

2
 

2 2 ⎛ Dcool _ outer ⎞ ⎛ θ ⎞
A2 = π(R − r )− (n cool −1)⎜⎜ ⎟⎟ ⎜π − ⎟ 4.1.1-12 
⎝ 2 ⎠ ⎝ 2 ⎠ 

where: n H2 
= Total number hydrogen feed tubes 

DH2 
= Inner diameter hydrogen feed tube [m] 
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Dcool _ outer = Outer diameter of coolant tube, including sleeve formed by extrusion of 
fin [m]. 

To satisfy Equation 4.1.1-1 the following must be valid, with substitutions from 
Equations 4.1.1-9 through 4.1.1-12 

A1 A2− = 0 4.1.1-13 
S1 S2 

Given the total number of coolant and hydrogen feed tubes, along with their associated 
dimensions, Equation 4.1.1-13 is used as an objective function in the Excel® spreadsheet 
to obtain a value for r. 

4.1.2 Length of Bed 
The required length, Lhyd, of the hydride alone, without vessel walls, liners or fins, is 

VhydL = 4.1.2-1 
⎡ D 2 D 2 ⎤hyd 

2 ⎛ cool _ outer ⎞ ⎛ H2 ⎞
π⎢R − n cool ⎜⎜ ⎟⎟ − n H ⎜⎜ ⎟⎟ ⎥
 

⎢ ⎝ 2 ⎠ 
2
⎝ 2 ⎠ ⎥
⎣ ⎦ 

where: Vhyd  = Total volume of hydride (in a reference chemical form) [m3]. Depends 
on hydride density, mass of hydrogen to be stored and moles of  
recoverable hydrogen to the moles of NaAlH4. 

For a bed with fins bounding the end surfaces, having a thickness t [m], and approximate 
spacing δapprox [m], the number of plate fins, nplate, is given by 

⎛ L ⎞ 
n plate = Roundup⎜

⎜ δ 
hyd ,0⎟

⎟ +1 4.1.2-2 
⎝ approx ⎠ 

Here, the operator Roundup(x,0) in Excel® rounds x up to the next highest integer. 

Given this number of fins, the total length of the bed, including hydride and fins, is 
L = L + tn 4.1.2-3hyd&fins hyd plate 

The actual spacing between the fins, δ [m], (which is the axial distance between the 
surfaces of the fins bounding the metal hydride layer) is  

L − tnhyd&fins plateδ =  4.1.2-4 
n −1plate 

4.1.3 Input Parameters for System Dimensions 
The input parameters required to calculate the dimensions of the storage vessel are list in 
Table 4.1.3-1. 
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Table 4.1.3-1 Input for Calculation of System Dimensions 
Parameter Value 

Mass of recoverable H2 to be stored in vessel 1000.00 g 
Practical ratio of moles H2 to moles NaAlH4 that can 
be stored 1.500 

Bulk density of NaAlH4 powder 0.72 g/ cm3 

Hydride bed diameter, no walls 23.00 cm 

Diameter of coolant tubes 1.91 cm 

Diameter of H2 injection tubes 1.27 cm 

Number of coolant tubes 9 

Number of H2 injection tubes 8 
Thickness of fin plates 0.0313 cm 
Approximate spacing between fin plates 0.64 cm 
Tube wall thickness 0.12 cm 
Density of tube material (6061-T6 Al from table on pg 
6-11 of Avallone and Baumeister [1987]) 2.70 g/ cm3 

Density of fin material (6061-T6 Al from table on pg 
6-11 of Avallone and Baumeister [1987]) 2.70 g/ cm3 

Material density of porous insert for H2 delivery 
(6061-T6 Al from table on pg 6-11 of Avallone and 
Baumeister [1987]) 2.70 g/ cm3 

Void fraction of porous insert for H2 delivery 0.70 
Density of tank material (Composite @ 
0.05419lbm/in3) 1.50 g/ cm3 

Density of liner material (6061-T6 Al from table on 
pg 6-11 of Avallone and Baumeister [1987]) 2.70 g/cm3 

Assume 1/16 in gap between bed & liner 0.159 cm 
Assume 1/32 in thick liner 0.079 cm 
Tank wall thickness at 50 bar w/ safety factor 0.132 cm 

4.1.4 Bed Characteristics 
The Department of Energy has set goals for the system volumetric capacity, Vcap, and the 
system gravimetric capacity, Gcap, which are respectively defined as 

m 
2Vcap ≡ H 4.1.4-1 

Vsystem 

and 
m 

2Gcap ≡ H  4.1.4 -2 
msystem 

where: mH2
 = Mass of recoverable hydrogen reacted in the bed [kg]. 

Vsystem  = Total volume of storage tank, including the bed, fins, liner gaps and 
pressure vessel [m3]. 

13 




 
   
 
 

 

 

 

 
 

 

 

 

 
 
 

 
 

  
  
 

WSRC-TR-2007-00439 
Revision 0 

msystem = Total mass of loaded storage tank, including the bed loaded with H2, 
fins, liner gaps and pressure vessel.  The mass of the heat transfer fluid 
is not included [kg]. 

Vcap and Gcap are calculated in the scoping spreadsheet. 

4.2 Heat Transfer Parameters 
The exothermic chemical reactions occurring during the loading of the bed and the 
requirement that the bed be heated to release hydrogen necessitate the use of a heat 
management system.  Since a shell and tube heat transfer system is assumed for the 
storage system, the principal heat transfer parameters are those related to convective 
exchange within the coolant tubes. 

In the spreadsheet model, the required rate of heat removal is determined by dividing the 
total heat generated during the charging of the bed by amount of time required for 
charging to occur. In this calculation, it is tacitly assumed that heat transfer to the coolant 
tubes is instantaneous and that the bed uptakes the full charge of hydrogen over the time 
allotted for charging. The system modeled in this report was evaluated for Dowtherm T® 

heat transfer fluid for single phase cooling and DuPont Vertrel-XF® heat transfer fluid for 
two phase cooling. Data sheets, from the respective vendors are listed in Attachments 1 
and 2. 

4.2.1 Single Phase Flow 
For coolant in single phase flow the Dittus-Boelter correlation was used to predict the 
mass flowrate required to remove the heat of reaction.  From Holman [1976] the Dittus-
Boelter correlation is 

0.8 0.4Nu D = 0.023Re Pr 4.2.1-1 

h Dwhere: Nu D  = DB  = Nusselt number based on diameter, D 
k f 

D = Inner diameter of coolant tube [m] 
h DB  = Dittus-Boelter convection heat transfer coefficient for the heat transfer fluid [W/(m2- K)] 

k f  = Thermal conductivity of the heat transfer fluid [W/(m- K)] 
GDReD =  = Reynolds number based on diameter, D 
µ 

G = Coolant mass flux [kg/(m2-s )] 

µ = Viscosity [Pa-s] 


ν
 Pr =  = Prandtl number 
α
 

ν = Kinematic viscosity of coolant [m2/s]
 
α = Thermal diffusivity of coolant [m2/s].
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Therefore, the single phase convection heat transfer coefficient, h f , is that obtained from 
the Dittus-Boelter correlation, h DB , which is 

⎛ GD ⎞
0.8 

0.4 kh DB = 0.023 ⎟⎟⎜⎜ Pr	 4.2.1-2 
µ D⎝ ⎠ 

The average heat flux, q”, from the wall of the coolant tube is then 
⎛ 0.8 ⎞⎛ GD ⎞ 0.4 k ⎟q"= h DB (Twall − Tbulk ) = 
⎜
⎜0.023	⎜⎜ µ ⎟⎟ Pr 

D ⎟
(Twall − Tbulk ) 4.2.1-3 

⎝ ⎠⎝	 ⎠ 

where: Twall = Tube wall temperature (K). 
Tbulk = Bulk coolant temperature (K). 

Based on the stored mass of hydrogen, mH2 
, and the time, τ, for the loading process, the 

average heat flux is 
(mH / M H2 

)∆Hrx q"= 2  4.2.1-4 
τ 

where: mH2
 = Mass of hydrogen stored in the bed (kg). 

M H2
 = Molecular weight of H2 [kg/g-mol]. 

∆Hrx = Overall heat of reaction for uptake of H2 by the hydride [J/g-mol]. 
τ = Time required for H2 loading [s]. 

Use Equations 4.2.1-3 and 4.2.1-4 to obtain the mass flux, G, required to remove the heat 
generated during loading. 

( )1/ 0.8q" G =	  4.2.1-51/ 0.8
⎡ 0.8 ⎤
k 0.4 ⎛ D ⎞

⎢0.023 Pr ⎟⎟⎜⎜ (T − T )⎥wall bulkD µ⎢ ⎝ ⎠ ⎥⎣	 ⎦ 

The pressure drop over the length of a coolant tube (length of the bed), required to drive 
coolant through the tube at a mass flux G, is 

2
Lhyd&fins G

∆P = f	 4.2.1-6 

D 2ρ 

where: f = Friction factor for the tube 
∆P  = Pressure drop across the length of the tube [Pa] 

Lhyd&fins  = Length of the bed, including hydride and fins [m]. 

The rise in the bulk coolant temperature over the length of a coolant tube (length of the 
bed) is approximated as 
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q"Lhyd&fins∆T ≈ 4 4.2.1-7 
DGCp 

where: Cp = Specific heat of coolant [J/(kg-K)], assumed approximately constant 
∆T  = Change in bulk temperature of coolant over the length of the bed [K]. 

4.2.2 Two Phase Flow 
If the coolant is allowed to boil at the inner wall of the coolant tube, and the critical heat 
flux is not exceeded, the rate of wall heat transfer will be greater than if the coolant 
remained in the liquid state.  However, the chemical kinetics of the bed are dependent on 
temperature.  Thus, the coolant must be selected to have a saturation temperature that is 
consistent with optimal reaction rates in the bed.   

Gungor and Winterton [1986] adapted their correlation for the convection heat transfer 
coefficient in vertical two-phase flow to horizontal flows by identifying a liquid Froude 
number dependent threshold between stratified and non-stratified flows.  The liquid 
Froude number, FrL , is defined as 

Fr =
G 2 

(1− x)2 4.2.2-1L ρ2 gDL 

where: G = Mass flux of liquid and gas phases of coolant, [kg/m2-s] 
g = Gravitational acceleration [m/s2] 
D = Inner diameter of coolant tube [m] 

ρL  = Density of saturated liquid coolant [kg/m3] 
x = Quality of coolant ⎡Mass of Gas Phase of Coolant⎤ 

⎢ ⎥Mass of Coolant⎣ ⎦ 

When FrL > 0.05 , the 1986 Gungor and Winterton vertical flow correlation is used 
directly, otherwise multipliers were used to modify terms in the correlation.   

The Gungor and Winterton [1986] correlation for the convection heat transfer coefficient 
depends on the coolant gas phase viscosity through the Martinelli parameter.  
Unfortunately, data for the gas phase viscosity of the selected coolant, DuPont Vertrel-
XF®, was unavailable. Therefore, in place of the Gungor and Winterton [1986] 
correlation, the Gungor and Winterton [1987] correlation was used because it was not 
dependent on the gas phase viscosity. The Gungor and Winterton [1987] correlation 

0.75 0.41 ⎤⎡ 
0.86 ⎛ x ⎞ ⎛ ρL ⎞ 

was h 2φ = ⎢1+ 3000B +1.12⎜ ⎟ ⎜⎜ ⎟⎟ ⎥h DBL 4.2.1-2 
⎢ ⎝1− x ⎠ ⎝ ρV ⎠ ⎥⎣ ⎦ 

where: h 2φ  = Two phase convection heat transfer coefficient [W/m2 K] 
ρV  = Density of saturated vapor [kg/m3] 
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h DBL  = 	 Dittus-Boelter convection heat transfer coefficient based on the local 
properties of the liquid coolant [W/m2 K] 

0.8 0.4 ⎛ k ⎞ = 0.023Re Pr ⎜ L ⎟	 4.2.1-2L L	 D⎝ ⎠ 
k L  = Thermal conductivity for the saturated liquid coolant [W/m-K] 

G(1− x)DReL  = 	 Reynolds number for the liquid coolant = 4.2.1-3 
µL 

CpLµLPrL  = Prandtl number for the liquid coolant = 4.2.1-4 
k L 

µL  = Viscosity of the saturated liquid coolant [Pa-s] 
CpL  = Specific heat of the saturated liquid coolant [J/kg K] 

q" B = 4.2.2-5 
Gh lg 

q” = Heat flux at tube wall [W/m2] 

h lg  = Enthalpy of phase change for the coolant [J/kg]. 


The heat flux at the inner wall of the coolant tube is given by 
q"= h 2φ (Tw − Tsat ) 4.2.2-6 

where: q” = Heat flux at inner wall of coolant tube [W/m2] 
Tw  = Temperature of the inner wall of the coolant tube [K] 
Tsat  = Saturation temperature of the coolant [K] 

For fixed values of q” and (Tw − Tsat ) , Equations 4.2.2-2 through 4.2.2-6 can be used to 
obtain the coolant mass flux, G via the iterative solver in Microsoft Excel®. 

4.2.3 Input for Heat Transfer 
The input required to calculate heat transfer requirements for the system are listed in 
Table 4.2.3-1 
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Table 4.2.3-1 Input for Calculation of Heat Transfer Parameters 
Parameter Value Reference 

∆HRxn1 37.00 kJ/mol H2 
Heat of reaction from species 2 to 
species 1, see Eq. 3.1-1, Gross [2003] 

∆HRxn2 47.00 kJ/mol H2 
Heat of reaction from species 3 to 
species 2 , see Eq.3.1-1, Gross [2003] 

Charging Time 180.00 sec 

Wall Temp 90.00 °C 

2φ Coolant Liquid 
Density 1580 kg/m3 DuPont Vertrel-XF®, see Attachment 2 

2φ Coolant Vapor 
Density 1.01 kg/m3 DuPont Vertrel-XF®, see Attachment 2 

2φ Coolant Liquid 
Themal Cond 10.4 W/(m K) DuPont Vertrel-XF®, see Attachment 2 

2φ Coolant Liquid 
Viscosity 0.001 kg/(m s) DuPont Vertrel-XF®, see Attachment 2 

2φ Coolant Liquid 
Specific Heat 1130 J/(kg K) DuPont Vertrel-XF®, see Attachment 2 

2φ Coolant Phase 
Change Enthalpy 129800 J/kg DuPont Vertrel-XF®, see Attachment 2 

2φ Coolant Liquid 
Prandtl No. 7.29 DuPont Vertrel-XF®, see Attachment 2 

Void Fraction (ε) 

Quality (x) 

1φ Coolant Liquid 
Density 820 kg/m3 Dowtherm T®, see Attachment 1 

1φ Coolant Liquid 
Themal Cond 0.104 W/(m K) Dowtherm T®, see Attachment 1 

1φ Coolant Viscosity 0.003 kg/(m s) Dowtherm T®, see Attachment 1 

1φ Coolant Specific Heat 2300 J/(kg K) Dowtherm T®, see Attachment 1 

1φ Coolant Prandtl No. 66.52 Dowtherm T®, see Attachment 1 

5.0 RESULTS 
Results from the kinetics, geometry and heat transfer scoping models are discussed in the 
following sections. A full scoping analysis of the sodium alanate bed was performed, 
while only the kinetics of the alpha-aluminum hydride bed were evaluated. 

5.1 Kinetics Model 
In this report, the Mathcad® based kinetics model was applied to TiCl3 catalyzed NaAlH4 

and to α-AlH3. Charging and discharging rates calculated by the kinetics model were 
idealized because the temperature and pressure remained fixed throughout the process; 
quite different from what would occur in an actual storage bed.  In an actual storage bed, 
there will be a transient change in the pressure when the bed is charged or discharged.  
Further, thermal inertia coupled with heat generated by chemical reactions will result in 
spatial variation in the temperature of the bed.  The pressure and temperature variations 
from fixed values will result in variations from the reaction rates predicted by the 
Mathcad® model. These effects are the primary reason that a 3-dimensional model that 
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couples thermal, mass and momentum transport is required to provide a more accurate 
assessment of bed peformance.  However, because the temperature and pressure are fixed 
in the Mathcad® kinetics model, it can be used to predict the upper limit for loading and 
discharge for a particular storage media.  In addition to reaction rates, the kinetics model 
can be used to predict both the long-time capacity of a storage media, as well as the best 
case loading for the allotted refueling time period. 

5.1.1 TiCl3 Catalyzed NaAlH4 
At 68 bar, the UTRC™ kinetics model for TiCl3 catalyzed NaAlH4 from Attachments 3 
and 4, gave the hydrogen uptake rates shown in Figure 5.1.1-1.  Loading rates in this 
figure are expressed in terms of the weight fraction of hydrogen stored in the hydride, see  
Equation 3.1-7.  This result identical to the rates obtained from UTRC™, see the reports 
in Attachments 3 and 4 and Figure 5.1.1-2.   

Loading a bed initially composed of pure NaH, with an excess of Al, at 50 bar and 
100°C. gives the loading curve shown in Figure 5.3.1-3.  The bed gravimetric capacity, 
which is the maximum weight fraction, approaches 0.029 at the long time limit, rather 
than 0.056, which is the theoretical limit based on the chemical balance in  
Equation 3.1-1. 

Cycling a bed having an initial concentration of 13,333.33 mole/m3 of NaH, and 0 
mole/m3 of the other hydrides, with a stoichiometric quantity of Al, between loading and 
discharging conditions, of 100°C at 50 bar and 120°C at 1 bar, respectively, gives the 
concentration curves shown in Figure 5.1.1-4. 
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H2 Uptake by NaH at 68 bar 

-0.005 

0.000 

0.005 

0.010 

0.015 

0.020 

0.025 

0.030 

0 3000 6000 9000 12000 15000 
Time (s) 

W
ei

gh
t F

ra
ct

io
n 

of
 H

2 
in

 A
la

na
te

 

80°C 

90°C 

100°C 

120°C 

140°C 

Figure 5.1.1-1 Hydrogen loading rates at 68 bar from the Mathcad® reaction kinetics 
model. 

Figure 5.1.1-2 Hydrogen loading rates at 68 bar from the UTRC™ reaction kinetics 
model in Attachments 3 and 4.  Solid lines represent data and dashed lines 
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represent the model.  The legend of Figure 5.3.1-1 gives the loading 
temperatures 

Weight Fraction 

0.0000 

0.0050 

0.0100 

0.0150 

0.0200 

0.0250 

0.0300 

0.0350 

0 20000 40000 60000 80000 100000 120000 140000 160000 
Time (s) 

W
ei

gh
t F

ra
ct

io
n 

Figure 5.1.1-3 Loading of hydrogen in the hydride at 50 bar and 100°C.  Storage in both 
NaAlH4 and Na3AlH6 are included. 
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Figure 5.1.1-4 Concentration of all species in the sodium alanate reaction.  The initial 
concentration of NaH was 13,333.33mole/m3 and 0 mole/m3 for the other 
hydrides. 
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5.1.2 α-AlH3 Discharge Kinetics 
Due to the unavailability of loading kinetics for α-AlH3, only the discharge rates were 
modeled, using the kinetics proposed by Graetz and Reilly [2005].  The kinetics for this 
process were independent of pressure, hence, only the effect of temperature was 
considered. 

The rate of decomposition of α-AlH3, relative to the initial concentration, at constant 
temperature is given by the family of curves in Figure 5.3.2-1.  The corresponding rate of 
H2 release, in units of mole H , is shown in Figure 5.1.2-2.2 
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Figure 5.1.2-1 Decomposition of α-AlH3 in terms of relative concentration, with respect 
to the initial concentration of α-AlH3. 
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Rate of H2 Release for α -AlH3 
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Figure 5.1.2-2 Rate of H2 generation due to decomposition of α-AlH3. The rate is 
expressed in terms of the rate of H2 produced relative to the initial 
concentration of α-AlH3. 

5.2 Bed Geometry 
Appendix A.1 contains a copy of the input and output used in the Microsoft Excel® 

spreadsheet used for scoping calculations related to the sodium alanate bed geometry.  
Due to the low loading rate predicted by the kinetics model, the time allowed for 
charging the bed was 12 minutes, rather than the DOE 2007 technical target of 10 
minutes.  In this sample calculation, however, the ratio of moles of recoverable H2 to 
moles of NaAlH4 in the fully converted bed was input as 1.5 rather than 0.213, which is 
the value calculated by the kinetics scoping model for a 12 minute charging time, see 
Table 4.1.3-1. Based on the model input, the parameters in Table 5.2-1 were obtained. 

Table 5.2-1 Calculated Bed and Vessel Parameters 
Required length of hydride alone (no structural 
members, fins or vessel) 0.6562 m 

Total number of fin plates, including ends 105 

Total length of bed (with fins but no vessel) 0.6890 m 

Actual spacing of plates 0.0063 m 

Mass of bed; including fins, tubes & NaAlH4 24.643 kg 

Volume of bed with vessel & liner 0.0362 m^3 
Overall length of vessel (assumed semi-
spherical ends) 0.9264 m 
Radial distance from axis of storage vessel to 
center of cooling tube circle.  The distance r in 
Figure 4.1.1-1 0.0855 m 

Gravimetric capacity of storage system 
0.041 (kg 

H2)/(kg Total) 

Volumetric capacity of storage system 
0.028 (kg 

H2)/(L Total) 
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5.3 Bed Heat Transfer 
The spreadsheet used to compute input and output for the loading phase bed heat transfer 
requirements is listed in Appendix A.2.  For sodium alanate, loading heat transfer 
requirements were chosen because they present the greatest challenge to the heat removal 
system.  The spreadsheet contains the input required for the sodium alanate system 
evaluated in this report and references the bed geometry model listed in Appendix A.1.  
Predicted system heat transfer parameters are also contained in the spreadsheet listed in 
Appendix A.2. 

Based on the chemical reaction equation and heats of reaction for NaAlH4, the time 
required for loading (12 minutes) and the surface area of the coolant tubes, the surface 
heat flux at the interior wall of a coolant tube was calculated to be 3.45 ×105 W/m2. 

5.3.1 Single Phase Flow 
For single phase flow the heat transfer fluid considered was Dowtherm T®, having 
properties listed in Table 4.2.3-1. For this heat transfer fluid, the operating parameters 
required to remove the heat of reaction during loading are listed in Table 5.3.1-1.  The 
required mass flux of coolant was computed using the Dittus-Boelter correlation, see 
Holman [1976]. 

Table 5.3.1-1 Bed Heat Removal Parameters for a Single Coolant Tube 
Parameter Value 

Mass Flux 10,300.4 kg/(m2 s) 
Mean Flow Velocity 12.61 m/s 
Tube Reynolds Number 58,861.02 
Pressure Drop Over Length of 
Tube 8.134×104 Pa 
Increase in Temperature Over 
Length of Tube 2.42 °C 

5.3.2 Two-Phase Flow 
In an attempt to enhance heat transfer from the bed during loading, cooling by two phase 
flow was investigated.  The heat transfer fluid considered in the model was DuPont 
Vertrel-XF® and the required two phase mass flux was calculated from the Gungor-
Winterton correlation [1986], assuming a low inlet quality for the coolant (on the order of 
10-5). The required mass flux for two phase flows was calculated to be 
16703.9 kg/(m2 s). 

Enhanced heat removal by the coolant is only effective if it is consistent with the rate of 
heat transfer from the hydride bed.  The ratio of the rate of heat removal by convection in 
the coolant to heat transfer by conduction by the bed is given by the Biot modulus, Bi.  
The Biot modulus is defined as 

h L
Bi = conv , 5.2.2-1 

k bed 
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where: h conv = Convection heat transfer coefficient for the coolant [W/(m2-K)] 
kbed = Thermal conductivity of the metal hydride bed [W/(m-K)]. 

L = Characteristic length [m]. 

For the two-phase cooled system analyzed in this report, see Appendix A.2 
2φ conv cool  = 0.9929 W/(cm2-°C) = 9929 W/(m2-K) h  = h

and, from Mosher, et. el. [2007] 
kbed = 0.325 W/m-K 

Take L to be the distance from the center coolant tube to a coolant tube in the ring, see 
Figure 4.1.1-1 and Appendix A.1. Then 
L ≈ r − D ≈ 0.076 m 

and, 
Bi ≈ 2,322. 

For a large Biot modulus, the rate of heat removal by convection far exceeds that by 
conduction. This implies that heat removal from the bed is limited by conduction and 
that the use of two-phase cooling alone will not improve heat removal for the bed 
configuration evaluated in this report.  For this system geometry and storage material, it 
is more important to reduce the conduction transport length in the bed, L, or increase the 
bed thermal conductivity than to enhance convection heat transfer. 

6.0 CONCLUSIONS 
The kinetics, geometry and heat transfer, scoping models developed in this task can be 
used to quickly assess whether or not a hydrogen storage system meets operational 
requirements and should be evaluated with a more detailed model.  Further, the scoping 
models may also be used to identify design modifications that improve performance.  
While the models do not perform detailed, coupled physics calculations, as would the 
more complete numerical model discussed in Hardy [2007], they provide sufficient 
information to estimate the dimensions and heat transfer parameters required for the 
storage system.   

For a particular hydride and bed configuration the kinetics, geometry and heat transfer 
scoping models are applied in the following sequence.  First, the mass of hydride required 
to store a given amount of hydrogen in the allotted refueling time is calculated with the 
kinetics model.  Optimal temperatures and pressures during the loading and discharge 
phases are also determined from the model.  Next, the required mass of hydride is input 
to the geometry scoping model via the ratio of moles of stored H2 to moles of final moles 
of hydride. The remaining input from Table 4.1.3-1 is then entered.  Finally, for a 
particular heat transfer fluid, the heat transfer requirements for the system are determined 
from the bed heat transfer scoping model. 
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When applied to the UTRC™ kinetics correlation for NaAlH4, the kinetics model 
replicated the UTRC™ predictions, see Figures 5.3.1-1 and 5.3.1-2.  Even under the most 
favorable loading conditions, however, the model showed that the approach to the 
theoretical weight fraction of stored hydrogen was very slow. Hence, to store sufficient 
hydrogen in the DOE target refueling time the mass of hydride will need to be increased 
to the point that the gravimetric capacity of the bed will be far below the DOE 2007 
technical target gravimetric capacity of 0.045 for the system.  For α-AlH4, the kinetics 
model showed that the release rate of hydrogen is very strongly dependent on 
temperature. 
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APPENDIX 

A.1 	 GEOMETRY AND HEAT REMOVAL SCOPING MODEL 
REQUIREMENTS 

A.1.1 Geometry Scoping Model 
The size, number of fins, gravimetric and volumetric capacities of the system evaluated 
in this report were based on parameters input to the Microsoft Excel® geometry scoping 
model shown in Figure A.1.1. 

Figure A.1.1 System dimensions calculated with the geometry scoping model. 

A.1.2 Heat Removal Scoping Model 
Operating parameters for the heat removal system were based on calculations with the 
Microsoft Excel® heat removal scoping model shown in Figure A.1.2.  The system in this 
report used Dowtherm T® heat transfer fluid for single phase cooling and DuPont Vertrel-
XF® heat transfer fluid for two phase cooling.  Data sheets, from the respective vendors 
are listed in Attachments 1 and 2. 
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Figure A.2.2 System heat transfer parameters estimated with the heat removal scoping 
model. 
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A.2 KINETICS SCOPING MODEL 
A.2.1 TiCl3 Catalyzed NaAlH4 Kinetics 
The Mathcad® based UTRC™ kinetics scoping model for TiCl3 catalyzed NaAlH4 is 
listed in this section of the Appendix. The model can run the reaction of Equation A.2.1­
1 in either direction and for any initial composition of NaAlH4, Na3AlH6 or NaH.  As 
given by the kinetics, the direction of the reaction depends on the temperature and H2 
pressure. The input parameters for the model below were chosen to cycle the bed. 

1 2 3
NaAlH ↔ Na AlH + Al + H ↔ NaH + Al + H A.2.1-14 { 3 6 2 { { 2
14243
 3 3 2
Re action1 14243 Re action 2 Species3Species1
 
Species 2
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A.2.2 α-ALH4 Kinetics 
The kinetics for α-AlH4 is based on the correlation of Graetz and Reilly [2005].  The 
correlation was input to Mathcad® and used to calculate the transient concentration of 
α-AlH4 and the release rate of H2, under discharge conditions for temperatures ranging 
from 80°C to 120°C.  An example of the Mathcad® model, at 110°C, used for these 
calculations is listed below. 
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ATTACHMENTS 


Att.1 Properties of Dowtherm T®
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Att.2 Properties of DuPont Vertrel-XF® 
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Att.3 UTRC™ Sodium Alanate Kinetics 1 
Practical Sorption Kinetics of TiCl3 Catalyzed NaAlH4 

Xia Tang, Daniel A Mosher and Donald L Anton 

United Technologies Research Center 

411 Silver Lane 

East Hartford, CT 06108 

Abstract

 Sodium alanate has been studied as a promising candidate material for reversible hydrogen storage due 
to its intermediate temperature range and relatively high storage capacity. Its rates of desorption and 
absorption of hydrogen have been shown to be enhanced by the addition of Ti in various compounds. To 
date, the sorption kinetics, especially absorption kinetics, is not well understood. In this study, a practical 
sorption kinetics model for TiCl3 catalyzed NaAlH4 has been developed to assist in the engineering design 
and evaluation of a prototype hydrogen storage system.      

Introduction 

 The design of a hydrogen storage system using any exothermic hydriding compound, such as NaAlH4, 
requires detailed consideration of local heat management. This is especially important in the critical 
hydrogen absorption stage, where high kinetics are required and heat flow is at its maximum.  Thermal 
transport architectures such as cooling tubes and metal foam structures need to be designed to meet the 
optimum operational characteristics of the hydrogen storage media. In order to design and model these 
architectures and obtain a gravimetrically and volumetrically optimized storage system, absorption and 
desorption kinetic models need to be identified and validated. Many current models, such as the well-
known Arrhenius model, are insufficient to characterize materials behavior under transient or partially 
discharged conditions. Previous kinetics studies of NaAlH4 mainly focused on the desorption reaction [1­
4]. Aborption and desorption kinetics models were developed by Luo and Cross [5] to simulate NaH+Al 
↔NaAlH4 reactions using NaH and Al as starting materials. No kinetics model was reported to simulate 
transient hydriding rate and hydrogen absorption capacity of NaH+Al derived from NaAlH4. In this study, a 
solid/gas chemical kinetics model originally developed by El-Osery [6-9] to design conventional metal 
hydride systems was utilized. This model was adapted for use in the multi-step hydrogen absorption 
mechanisms of NaH+Al→NaAlH4. 

Basic Kinetics Model 

 The dehydrogenation and hydrogenation of sodium alanate involve the following well-known reactions: 
NaAlH4 ↔ 1/3 Na3AlH6 + 2/3 Al + H2 ↔ NaH + Al + 3/2 H2

 For compactness, the compositional state can be tracked by a single variable for each 

product/reactant, C1, C2 and C3 as: 


C1: NaH + Al + 3/2 H2 

C2: 1/3 Na3AlH6 + 2/3 Al + H2 

C3: NaAlH4 

The nomenclatures for all reactions are listed in Table 1.  
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Table 1 Nomenclature for All Reactions 

Label Action Reactant Product 
r1 Dehydriding of Na3AlH6  C2  C1 
r2 Hydriding of NaH C1  C2 
r3 Dehydriding of NaAlH4  C3  C2 
r4 Hydriding of Na3AlH6  C2  C3

 Reaction rates can be represented by equation (1) based on the metal hydride model developed by El-
Osery [6-7]: 
⎛ dC j ⎞⎜ ⎟⎟ = fT (T ) * fP (P) * fC (Ck ) (1) ⎜ dt⎝ ⎠ri 

i for reaction ri 
j for composition product Cj 
k for composition reactant Ck. 
   The temperature dependant term is that of the typical Arrhenius equation given as: 

f = A exp⎜
⎛−

Ei ⎟
⎞ 

(1a) T i 
⎝ RT ⎠ 

The pressure dependant term can be expressed simply as a first order expression: 
⎛ P − P ⎞i e,if = (−1) * ⎜
⎜ 

⎟
⎟  (1b) P P⎝ e,i ⎠ 

where Pe,i is the equilibrium pressure for the reaction and is valid for both hydriding and dehydriding.  
Equilibrium pressure Pe,i is temperature dependant and obeys the van’t Hoff equation: 

∆H ∆Sln(Pe,i ) = −  (1c) 
RT R 

 In El-Osery’s description, a first order function of hydrogen/metal atomic ratio was used in a 
concentration factor for hydriding. In hydriding reactions of the NaH+Al system, however, two solid 
reactants are involved in each reaction respectively. They may have higher reaction orders. The 
concentration factor is thus represented as being proportional to the reactant concentration to some power, 
χi  as: 

f = (  )χ iC Ck  (1d) 

 Combining these factors results in the rate equation:
 

dC j ⎛ E ⎞ ⎛ P − Pe,i ⎞ χ= Ai exp⎜− i ⎟*(−1)i *⎜
⎜

⎟
⎟* ( )Ck i (2) 

dt ⎝ RT ⎠ Pe,i⎝ ⎠ 

 Applying equation (2) to r2 and r4, one obtains the following equations for high pressure hydriding (r2 
and r4 are active).  

⎛ dC2 ⎞ ⎛ E2 ⎞ ⎛ P − Pe,2 ⎞ χ ⎛ dC1 ⎞ ⎛ dC2 ⎞ = A exp − *⎜
⎜ ⎟* ( ) 2 and = −⎜ ⎟ 2 ⎜ ⎟ ⎟ C1 ⎜ ⎟ ⎜ ⎟ 

⎝ dt ⎠ ⎝ RT ⎠ Pe,2 ⎝ dt ⎠ ⎝ dt ⎠r2 ⎝ ⎠ r2 r2 

⎛ dC3 ⎞ ⎛ E4 ⎞ ⎜
⎛ P − Pe,4 ⎟

⎞ χ 4 ⎛ dC2 ⎞ ⎛ dC3 ⎞⎜ ⎟ = A exp − ⎟* ⎟* ( )  and = −⎜4 ⎜ C2 ⎜ ⎟ ⎟⎜dt RT P dt dt⎝ ⎠r4 ⎝ ⎠ ⎝ e,4 ⎠ ⎝ ⎠r4 ⎝ ⎠r4 
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 The reaction rate of each composition can be represented as: 

dC1 ⎛ E ⎞ ⎛ P − P ,2 ⎞ 
= − A exp⎜ − 2 ⎟ * ⎜⎜

e ⎟
⎟ * ( )C χ 2  (5) 2 1dt ⎝ RT ⎠ P⎝ e,2 ⎠ 

dC ⎛ E2 ⎞ ⎛ P − Pe,2 ⎟
⎞ χ ⎛ E ⎞ ⎛ P − Pe,4 ⎞ χ 42 ⎜ ( ) 2 4 ⎜ ⎟ ( )  (6) = A2 exp⎜− ⎟ * * C1 − A4 exp⎜− ⎟ * * C2dt ⎝ RT ⎠ ⎝

⎜ Pe,2 ⎠
⎟ ⎝ RT ⎠ ⎝

⎜ Pe,4 
⎟
⎠ 

dC E ⎛ P − P ⎞3 ⎞ ,4 = A ⎛
⎜ 4 

⎜
e 

⎟ C χ 4exp − ⎟ * ⎜ ⎟ * ( ) (7)4 2dt ⎝ RT ⎠ P⎝ e,4 ⎠ 

0 ≤ Ci ≤ 1 

Ct =0 Ct =0 Ct =0with the initial reaction conditions: =1, = 0 , = 0 ,1 2 3 

Experimental Procedure 

 To validate the applicability of this kinetic model, a well-known alanate composition was chosen for 
empirical assessment. Commercial grade NaAlH4 was purchased from Albemarle Co. (Baton Rouge, LA) 
with a chemical certification analysis of 86.3% NaAlH4, 4.7%Na3AlH6, 7.5% free Al and 10.1% insoluble 
Al (with all analyses given in wt%). The catalyst, TiCl3 (99.99%), was obtained from Aldrich Corp. All 
materials were used in the as-received condition.  

 The NaAlH4 was catalyzed with 4 mol % TiCl3 by high energy SPEX ball milling for three hours under 
nitrogen. Immediately after ball milling, approximately 1 g of the sample was transferred into the sample 
holder of a modified Sievert’s apparatus. All the storage and transferring of NaAlH4 and TiCl3 were 
performed under a high purity nitrogen  environment inside a glove box with an oxygen concentration <10­

5 ppm.
 TiCl3 catalyzed NaAlH4 was first desorbed at 150°C in vacuum for more than 7 hours to ensure 

maximum desorption. Absorption was conducted with the hydrogen pressure ranging from 6.8-6.0 MPa. 
Extent of reaction versus time was measured by monitoring hydrogen pressure change using a gas reaction 
controller made by Advanced Materials Co. (Pittsburg, PA).   

Results and Discussion 

 Rate equations (5) to (7) represent an ideal kinetics model, where the total charging capacity over long 
periods approaches the ideal capacity of 5.6 wt%. However, in reality, the total capacity is usually less than 

C Satthe theoretical value. Saturation compositions, (T ) , are introduced into the rate equations to reflect k 

this non-ideal capacity. They represent the residual reactant compositions at the hydriding saturation point 
fordifferent temperature values.  

 The concentration factors in equation (1d) are thus changed to: 
sat i satf = (C − C (t))χ if C − C (T ) ≥ 0  (1e) C k k k k 

fC = 0 if Ck − Ck
sat (T ) < 0  (1f)


 The rate equations are represented accordingly by: 


dC1 ⎛ E2 ⎞ ⎜
⎛ P − Pe ,2 ⎞ sat χ 2= − A2 exp⎜ − ⎟ * ⎟ * [C1 − C1 (T )] (8) 

dt ⎝ RT ⎠ ⎝
⎜ Pe ,2 

⎟
⎠ 
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dC2 E2 ⎞ ⎛ P − Pe,2 ⎞ sat χ2 E4 ⎞ ⎛ P − Pe,4 ⎞ sat χ 4= A exp⎜
⎛− ⎟ * ⎜ ⎟ * [C − C (T )] − A exp⎜

⎛− ⎟ * ⎜ ⎟ * [C − C (T )] (9)2 1 1 4 2 2⎜ ⎟ ⎜ ⎟dt RT P RT P⎝ ⎠ ⎝ e,2 ⎠ ⎝ ⎠ ⎝ e,4 ⎠ 

dC E ⎛ P − P ⎞ χ3 ⎛ 4 ⎞ e,4 sat 4= A exp⎜− ⎟ * * [C − C (T )]  (10) 4 2 2dt ⎝ RT ⎠ ⎜
⎜ 

Pe,4 
⎟
⎟ 

⎝ ⎠ 
 The modified compositions and total hydriding capacity at saturation are:  

sat sat sat satC1 = C (T ), C2 = C (T ), C3 = 1− C (T ) − C (T )1 2 1 2 
sat The total H2 absorption capacity w (T ) :iso 

sat sat sat satw (T ) = 0.0187 *C (T ) + 0.056* (1− C (T ) − C (T )) (11) iso 2 1 2 
 Curve fitting with experimental data using equations (8) to (13) is shown in Figure 1. The parameters 

used for fitting are listed in Table 2. The slope and intercept in the van’t Hoff plot were derived from data 
published by Cross et al. [10].  

Table 2 Fitting Parameters in Figure 1 

(∆H/R)r2 -6150 Slope in van't Hoff plot 
-(∆S/R)r2 16.22 Intercept in van't Hoff plot 
A2 1.50E+05 Pre-exponent coefficient for r2 

E2 70 Activation energy for r2, KJ/mol of H2 for r2 

χ2 1 Reaction order for r2 

(∆H/R)r4 -4475 Slope in van't Hoff plot, r4 

-(∆S/R)r4 14.83 Intercept in van't Hoff plot, r4 

A4 1.00E+08 Pre-exponent coefficient for r4 

E4 80 Activation energy for r2, kJ/mol of H2 for r4 

χ4 2 Reaction order for r4 

 The activation energies, Ei, for r2 and r4 are 70 and 80 KJ/mol of H2  and the pre-exponent coefficients, 
Ai, 1.50E+05 and 1.00E+08 respectively.   The hydriding reaction, r4 (Na3AlH6 to NaAlH4) has a higher 
activation energy than the reaction, r2, NaH to Na3AlH6. However, the pre-exponential coefficient of r4 is 
much higher than r2. This could be due to catalyst placement preferentially at positions favorable to r4 
reaction. The reaction orders of the two hydriding steps appear to be different, with r2 being nominally a 
first order reaction, and r4 a second order reaction.  The reaction orders are consistent with those reported 
by Luo and Gross [5]. During the formation of Na3AlH6, NaH is the limiting reactant and Al is in access. 
Al concentration can be considered as constant and the reaction becomes a pseudo first order. In r4, the 
reactants, Na3AlH6 and Al, are in stichometric ratio. Both concentrations can affect reaction rate. The 
formation of NaAlH4, therefore, is a second order reaction. 
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Figure 1 H2 absorption curves at 80-140°C with H2 pressure ranging from 6.0-6.8MPa. The 
dashed lines are model results, with red=80°C; blue=90°C; cyan=100°C; green=120°C; and 
magenta=140°C. 

 As shown in Figure 1, the model fits experimental data well in absorption temperature range of 80°C­
120°C. However, the fit is not as accurate for absorption at 140°C. As the temperature increases, the 
hydriding reaction of Na3AlH6 to NaAlH4 approaches its thermodynamic equilibrium at 6.0-6.8 MPa 
hydrogen pressure. The Pe for 2 mol.% Ti(OBun)4 catalyzed materials is 5.4 MPa [9]. Although the reaction 
rate increases with temperature, the capacity decreases as a result of decreasing thermodynamic driving 
force. Absorption at this temperature is not recommended at this hydriding pressure. 

 By close inspection. it can be seen in Figure 1 that inflection regions are present during the initial rapid 
hydriding. Similar inflections were also observed in previous absorption data published by Sandrock et al. 
[11].  There are two possibilities for this observation; (i) a temperature rise in the sample upon exothermic 
hydriding of NaH to form Na3AlH6 or (ii) the combination of slowing down of the first hydriding reaction, 
r2, and starting of the second reaction, r4. To resolve this question, accurate sample temperature 
measurement is required. This non-isothermal factor can be included in future models when accurate in-situ 
measurement of the sample temperature becomes available. In addition, the current model is fit to 
isothermal hydriding data, with the assumption that the hydriding rate is not affected by thermal histories 
except that captured by the variables Ck. Reactions involving solid reactants and products usually involve 
product nucleation and growth periods, and reaction rates are closely related to the characteristics of these 
periods. Previous thermal histories could affect particle sizes, packing and reactant/catalyst distribution. 
These changes will have an effect on the characteristics of nucleation and growth, therefore altering 
reaction rates. Future kinetics models should take these factors into consideration.  
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Conclusion 

 A practical kinetics model has been developed to simulate hydrogen absorption of NaH + Al obtained 
from TiCl3 catalyzed NaAlH4. Physical meaning of the basic model is discussed. Modification of the model 
has been made with additional parameters for non-stoichiometric saturation compositions. The modified 
model fits well with experimental data at temperatures ranging from 80°C to120°C in the pressures range 
6.0-6.8MPa. This model has provided kinetic information needed in the design of 1 kg hydrogen storage 
system using NaAlH4 as storage media. Although this model needs further refinement to include non-
isothermal factors and solid state reaction mechanisms, it has given valuable insights in optimizing thermal 
management and operational conditions for the 1 kg prototype system.  
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