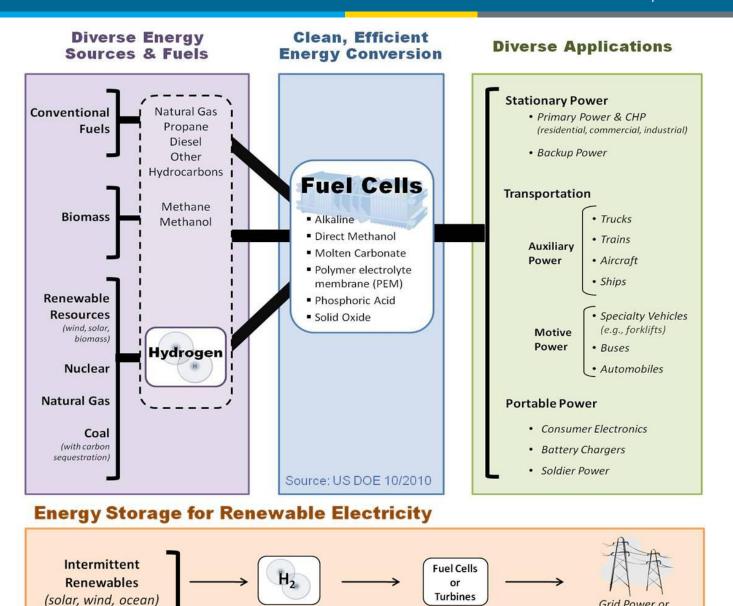
FUEL CELL TECHNOLOGIES PROGRAM

Stakeholders Webinar – Budget Briefing

Energy Efficiency & Renewable Energy

Overview of Hydrogen & Fuel Cell Budget


February 24, 2011

Sunita Satyapal

U.S. Department of Energy Fuel Cell Technologies Program Program Manager

Fuel Cells: For Diverse Applications

ENERGY Energy Efficiency & Renewable Energy

Grid Power or Distributed Power

The FY 2012 Budget Request:

Develop cost competitive hydrogen and fuel cell technologies for diverse applications to meet long-term goals of \$30/kW for transportation, \$750/kW for stationary power, and \$2-4/gge for hydrogen production and delivery.

Continues New Sub-programs for:

• Fuel Cell Systems R&D

- Consolidates four sub-programs: Fuel Cell Stack Components R&D, Transportation Fuel Cell Systems, Distributed Energy Fuel Cell Systems, and Fuel Processor R&D
- Technology-neutral fuel cell systems R&D for diverse applications

• Hydrogen Fuel R&D

- Consolidates Hydrogen Production & Delivery and Hydrogen Storage activities
- Recognizes critical need for Safety Codes and Standards

Defers funding for:

- Education
- **Market Transformation** (Due to deployments and ongoing data collection and analyses underway through the Recovery Act)

- The FY 2012 Hydrogen and Fuel Cells request allows the Department to sustain a balanced research and development (R&D) portfolio, with emphasis on batteries and advanced vehicles, as well as on renewable power and energy efficiency.
 - DOE funding has already reduced the cost of fuel cells by more than 80% since 2002 and by 30% since 2008¹. Hydrogen and fuel cell technologies are still part of the portfolio but will have an impact in the longer term.
- To enable domestic competitiveness, EERE will continue to support R&D of hydrogen and multiple types of fuel cells for diverse applications (in stationary power, portable power, and transportation, including fuel cell vehicles).
- DOE's Recovery Act funding (\$43 million) will deploy up to 1,000 fuel cells for early market applications and will provide data and lessons-learned from early market deployments
 - Funding has been reduced for aspects of the program with less impact on R&D progress, such as Market Transformation.
 - Further Market Transformation and Education activities are deferred until results from Recovery Act funding are available.

¹http://www.hydrogen.energy.gov/pdfs/10004_fuel_cell_cost.pdf

	Funding (\$ in thousands)				
	FY 2007 Approp.	FY 2008 Approp.	FY 2009 Approp.	FY 2010 Approp.	FY 2012 Request
EERE Hydrogen & Fuel Cells	189,511	206,241	195,865	174,000 ²	100,450
Fossil Energy (FE) ¹	21,513	21,773	26,400	26,400	0
Nuclear Energy (NE)	18,855	9,668	7,500	5,000	TBD
Science (SC)	36,388	36,484	38,284	38,284	TBD
DOE TOTAL	266,267	276,481	268,049	243,684	TBD

Note: No funding requested for SECA Program FY12 (FE)

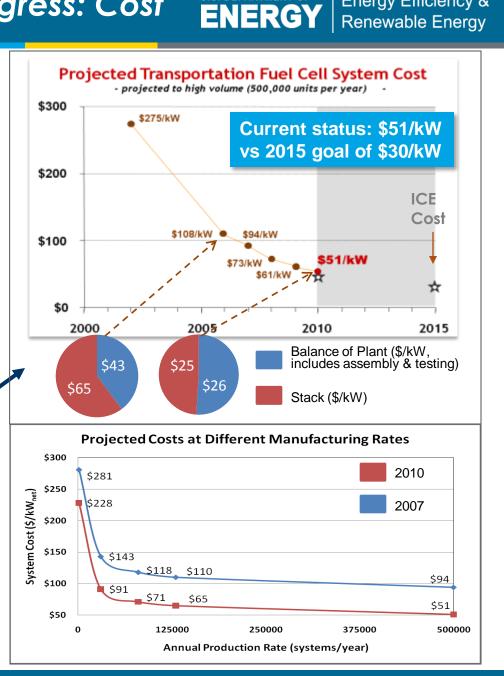
EERE H₂ & Fuel Cells Budgets

Funding (\$ in thousands)					
Key Activity	FY 2009 ⁴	FY 2010 Current Appropriation	FY 2012 Request		
Fuel Cell Systems R&D ¹	-	75,609	45,450		
Fuel Cell Stack Component R&D	61,133				
Transportation Systems R&D	6,435		-		
Distributed Energy Systems R&D	9,750		-		
Fuel Processor R&D	2,750		-		
Hydrogen Fuel R&D ²	-	45,750	35,000		
Hydrogen Production & Delivery R&D	10,000		-		
Hydrogen Storage R&D	57,823		-		
Technology Validation	14,789 ⁵	13,005	8,000		
Market Transformation ³	4,747	15,005	-		
Early Markets	4,747	15,005	-		
Safety, Codes & Standards	12,238 ⁵	8,653	7,000		
Education	4,200 ⁵	2,000	-		
Systems Analysis	7,520	5,408	3,000		
Manufacturing R&D	4,480	4,867	2,000		
Total	\$195,865	\$170,297	\$100,450 ⁶		

¹ Fuel Cell Systems R &D includes Fuel Cell Stack Component R&D, Transportation Systems R&D, Distributed Energy Systems R&D, and Fuel Processor R&D ² Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D ³ No Market Transformation in FY 2012. ⁴ FY 2009 Recovery Act funding of \$42.967M not shown in table ⁵ Under Vehicle Technologies Budget in FY 2009 ⁶ Includes SBIR/STTR funds to be transferred to the Science Appropriation; all prior years shown exclude this funding

Fuel Cell Systems R&D — Progress: Cost

Energy Efficiency & Renewable Energy


DOE-funded efforts have reduced the projected high-volume cost of fuel cells to \$51/kW (2010)*

- More than 30% reduction since 2008
- More than 80% reduction since 2002
- 2008 cost projection was validated by independent panel** As stack costs are reduced,

balance-of-plant components are responsible for a larger % of costs.

*Based on projection to high-volume manufacturing (500,000 units/year).

**Panel found \$60 – \$80/kW to be a "valid estimate": http://hydrogendoedev.nrel.gov/peer reviews.html

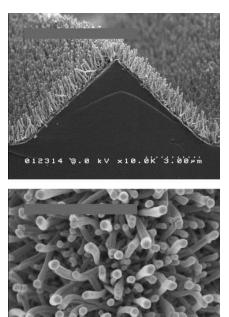
U.S. DEPARTMENT OF

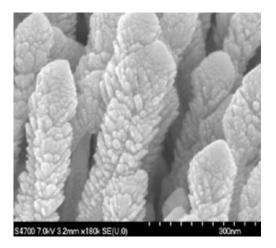
Fuel Cell R&D — Progress

ENERGY Energy Efficiency & Renewable Energy

The Program has reduced PGM content, increased power density, and simplified balance of plant, resulting in a decrease in system cost.

From 2008 to 2010, key cost reductions were made by:


- Reducing platinum group metal content from 0.35 to 0.18 g/kW
- Increasing power density from 715 to 833 mW/cm²
- Simplifying balance of plant


 \rightarrow These advances contributed to a \$22/kW cost reduction.

Key improvements enabled by using novel organic crystalline whisker catalyst supports and Pt-alloy whiskerettes.

There are ~ 5 billion whiskers/cm².

Whiskers are ~ 25 X 50 X 1000 nm.

Whiskerettes: 6 nm x 20 nm

Source: 3M

Fuel Cell Systems R&D: Key FY 2012 Activities ENERGY

Energy Efficiency & Renewable Energy

Continue R&D of fuel cell systems for stationary, portable, and transportation applications, using multiple technologies (including PEM, solid oxide, and alkaline fuel cells) and a variety of fuels (including hydrogen, diesel, natural gas, and bio-derived renewable fuels).

The Program will continue its emphasis on:

- Science & engineering at the cell level
- Integration and component interactions at the systems level
- Balance-of-plant components (such as water transport, sensors, and air compression)

Key R&D areas (*core technologies*):

- **Catalysts** Focus on approaches that will increase activity and utilization of current PGM and PGM-alloy catalysts, as well as non-PGM catalyst approaches for long-term applications.
- Develop **high-temperature membranes** that will reduce the negative effects of impurities and decrease the size of the cooling system.
- Improve **PEM-MEAs** (for stationary and transportation applications) through integration of MEA components.
- Develop **transport models** and in-situ and ex-situ experiments to provide data for model validation.
- Identify **degradation mechanisms** and develop approaches to mitigate their effects.
- Investigate and quantify **effects of impurities** on fuel cell performance.
- **Durability & accelerated stress-testing**—determine their correlation with real-world degradation.
- **BOP component** development such as sensors, air compression, and humidifiers

Applications—examples of systems R&D in FY 2012

- **Portable Power.** Focus on materials improvements for directmethanol fuel cells.
 - Reduce anode & cathode catalyst loading, while improving catalytic activity and durability.
 - Improve membranes, to reduce crossover and increase proton conductivity.

Stationary distributed power generation

Includes integrated FC systems for distributed power generation and CHP applications

- Develop FC systems for µ-CHP (1-10 kW) for residential and light commercial applications
- Improve stack components for high-temperature fuel cells including PEM-PBI-type and SOFC
- Develop **BOP components**, such as sensors and blowers
- For **fuel processors**, concentrate on component integration, fuel flexibility, and clean-up of deleterious fuel components

Funding Opportunity Announcements (FOAs) Pending FY11 Appropriations

Energy Efficiency & Renewable Energy

Fuel Cell FOA

Up to \$65 million over three years to fund continued R&D on fuel cell components. Topics include:

- 1. Balance-of-Plant components
- 2. Fuel Processors
- 3. High Temperature Stack Component Research
- 4. PEMFC MEA Integration
- 5. Catalysts/Electrodes
- 6. Membranes
- 7. Innovative Concepts

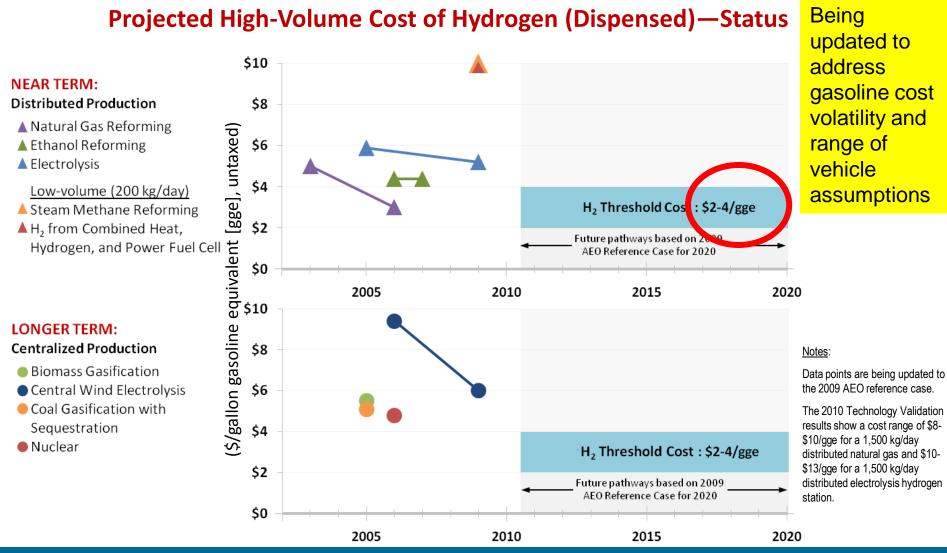
Letter of Intent Due: January 28, 2011

Applications Due: March 3, 2011

Cost Analysis FOA

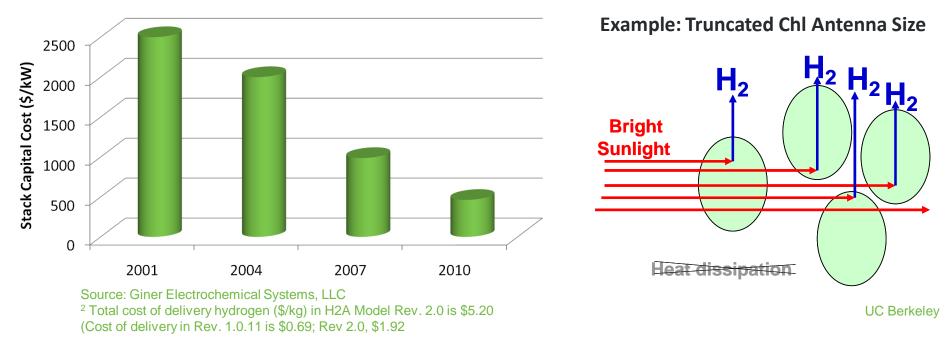
Up to \$9 million to conduct independent cost analyses. Topics include:

- 1. Transportation PEM Fuel Cell System Cost Assessment
- 2. Stationary and Emerging Market Fuel Cell System Cost Assessment
- 3. Hydrogen Storage System Assessment


Applications Due: February 18, 2011

Progress: Hydrogen Production R&D

Energy Efficiency & Renewable Energy


High volume projected costs for hydrogen production technologies continue to decrease. Low volume/early market costs are still high. Hydrogen cost range reassessed – includes gasoline cost volatility and range of vehicle assumptions.

R&D Progress - Examples

ENERGY Energy Efficiency & Renewable Energy

Production: Reduced Electrolyzer Stack Cost by over 80% since 2001²

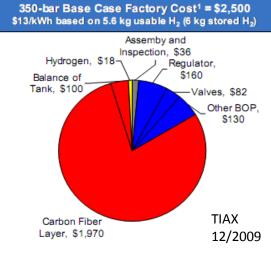
Improved photosynthetic solar –to-chemical energy conversion from 3 to 25% for photobiological hydrogen production by truncating the chlorophyll antenna size (Berkeley)

Demonstrated bandgap tailoring in photoactive MoS₂ nanoparticles. Increased bandgap from 1.2eV to 1.8 eV for more optimal photoelectrochemical (PEC) water splitting (by quantum effects). (Stanford U.)

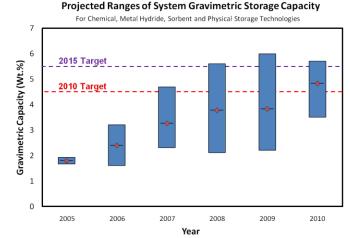
Hydrogen Delivery R&D

The Program is developing technologies to deliver hydrogen from centralized production facilities, efficiently and at low cost.

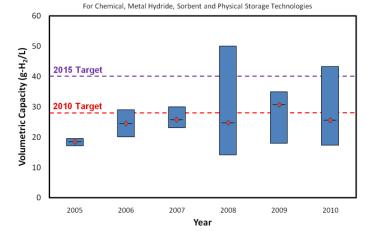
We've reduced the cost of hydrogen delivery* — ~30% reduction in tube trailer costs >20% reduction in pipeline costs ~15% reduction liquid hydrogen delivery costs *Projected cost, based on analysis of state-of-the-art technology


H₂ Storage R&D

Significant progress has been made but meeting all weight, volume, performance and cost requirements is still challenging.


Compressed gas storage offers a near-term option for initial vehicle commercialization and early markets

- Validated driving range of up to ~ 430 mi
- Cost of composite tanks is challenging
 - carbon fiber layer estimated to be >75% of cost
- Advanced materials R&D under way for the long term



¹Cost estimate in 2005 USD. Includes processing costs.

Projected Capacities for Complete 5.6-kg H₂ Storage Systems

Based on analysis using the best available data and information for each technology analyzed in the given year. Projected Ranges of System Volumetric Storage Capacity

Based on analysis using the best available data and information for each technology analyzed in the given year.

Hydrogen Fuel R&D: Key FY 2012 Activities

Focuses on materials research and technology to address key challenges to hydrogen production, delivery, and storage, and to enable low-cost, carbon-free hydrogen fuels from diverse renewable pathways.

→ Request focuses on continuing funding to existing projects.

Production R&D key focus areas for FY 2012:

Achieve a 25% reduction in electrolyzer capital cost reducing the projected hydrogen cost from \$6/gge in 2009 to less than \$5/gge.

Develop materials with photoelectrochemical conversion efficiency of 10% compared to a 4% baseline, reducing the projected hydrogen cost from \$6/gge in 2009 to less than \$5/gge .

Improve the durability of high-efficiency PEC materials to 1000 hours.

→ Production R&D, ongoing work: Existing projects in longer-term centralized production will continue (including solar thermochemical and biological).

Delivery R&D key focus areas for FY 2012:

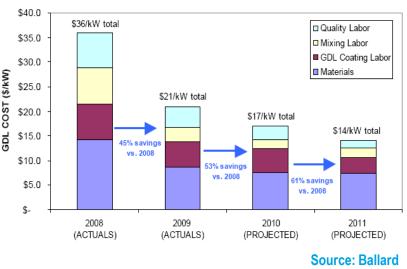
Work towards increasing the pressure capability of electrochemical hydrogen compression from 6,000 to 12,000 psi for potential use in hydrogen stations in the long term.

Develop fiberglass-based storage vessels that exhibit high pressure capacities to enable 7000 psi and a~ 50% reduction in cost relative to carbon-fiber wrapped tanks in the long term.

Hydrogen Fuel R&D: Key FY 2012 Activities

Focuses on materials research and technology to address key challenges to hydrogen production, delivery, and storage, and to enable low-cost, carbon-free hydrogen fuels from diverse renewable pathways.

→ Request focuses on continuing funding to existing projects.


Storage R&D key focus areas for FY 2012:

Engineering Center of Excellence will continue advancing complete system engineering design of materials-based technologies.
Material and system development will continue for early market applications as well as for automotive applications.

Include efforts to lower cost for high strength carbon fiber for compressed gas storage vessels.

H₂ for Energy Storage will be included, pending FY11 appropriations

- Fuel Cell MEA Measurement R&D (NREL)
 - Developed IR-based test stand to detect defects such as pinholes, shorts, and electrode thickness in variations
- High Speed, low cost fabrication of gas diffusion electrodes for MEAs (BASF)
 - Developed an innovative on-line XRF
 - Developed a predictive model for electrode variation and defect impacts on MEA performance
- Developed process model for controlling GDL coating conditions (Ballard)
 - Significant improvement in quality yields and GDL cost reduction estimated at 53% to-date in 2 years

GDL Actual Costs

Near-term Goal for Early Markets

Lower fuel cell stack manufacturing cost by \$1000/kW (from \$3,000/kW to \$2,000/kW, for low-volume manufacturing)

Project Emphasis

- Electrode Deposition (BASF, PNNL)
- High Pressure Storage (Quantum Technologies)
- MEA Manufacturing (Gore, LBNL, RPI)
- Gas Diffusion Layer (GDL) Fabrication (Ballard)
- Effective Testing of Fuel Cell Stacks (PNNL, UltraCell)
- Effective Measurement of Fuel Cell Stacks (NREL, NIST)

Manufacturing R&D: Key FY 2012 Activities ENERGY

Energy Efficiency & Renewable Energy

Manufacturing R&D will continue to develop processes and technologies to enable low-cost, high-volume manufacturing of hydrogen and fuel cell technologies. Near-term activities will encompass R&D of technologies critical to an early start-up of high-volume commercialized products.

Key Focus Area:

Develop low-cost, high-volume continuous in-line MEA quality control measurement technologies in 2012, on track to develop continuous fabrication and assembly processes for polymer electrolyte membranes by 2016.

EMPHASIS

- Workshop will help prioritize key areas for manufacturing R&D under budget constraints
 - Novel fabrication methods for MEAs
 - MEA and stack assembly processes
 - Reduce costs for stack conditioning and leak testing
 - Lower costs for high pressure carbon composite tanks

Technology Validation

Demonstrations are essential for validating the performance of technologies in integrated systems, under real-world conditions.

RECENT PROGRESS

Vehicles & Infrastructure

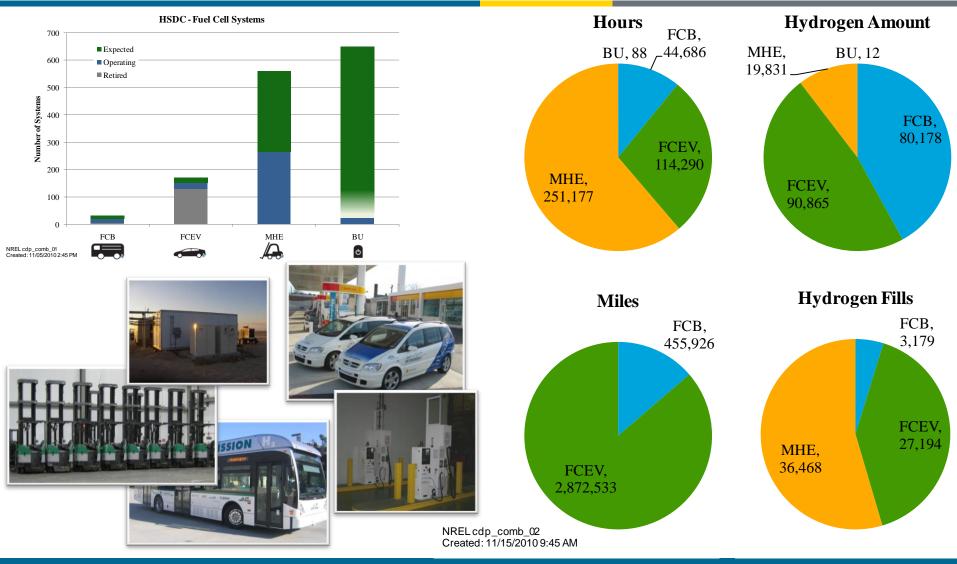
- 152 fuel cell vehicles and 24 hydrogen fueling stations
- Over 2.8 million miles traveled
- Over 114 thousand total vehicle hours driven
- 2,500 hours (nearly 75K miles) durability
- Fuel cell efficiency 53-59%
- Vehicle Range: ~196 254 miles (independently also validated 430 mile range)

Buses

- DOE is evaluating real-world bus fleet data (DOT collaboration)
- H₂ fuel cell buses have a 41% to 132% better fuel economy when compared to diesel & CNG buses

Forklifts

- Over 18,000 refuelings at Defense Logistics Agency site Recovery Act
- DOE (NREL) is collecting operating data from deployments for an industry-wide report



Technology Validation

Demonstrations are essential for validating the performance of technologies in integrated systems, under real-world conditions.

Technology Validation: Key FY 2012 Activities

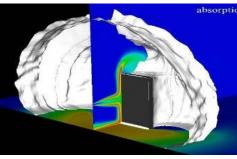
Energy Efficiency & Renewable Energy

Continue early-market-application data collection and conduct limited validation activities to address fuel cell systems used in stationary power applications, masstransit, and light-duty vehicles

FY 2012 Activities

- Data Collection Activities Demonstration projects will continue with data collection and operation of backup power systems and specialty vehicles; collaboration with DOT on the Fuel Cell Bus Program will continue; and support for CHHP (*combined heat, hydrogen, and power*) demonstration will continue (in collaboration with the California Air Resources Board and the South Coast Air Quality Management District).
- **Other Activities** Issue a Funding Opportunity Announcement for projects related to residential stationary fuel cells, Combined hydrogen heat hydrogen and power fuel cell systems and Auxiliary Power Units for aircraft and heavy duty trucks (Request for Information planned for stakeholder input).

Safety, Codes & Standards R&D

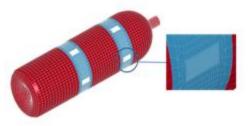

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

Separation Distances

Provided technical data and incorporated riskinformed approach that enabled NFPA2 to update bulk gas storage separation distances in the 2010 edition of NFPA55

Barrier walls reduce separation distances simulated position of allowable heat flux iso-surface for 3-minute employee exposure (2009 IFC).



Fuel Quality Specification

- Draft International Standard (DIS) was submitted to ISO TC197 Nov 2010
- Technical Specification (TS) published and harmonized with SAE J2719, Committee Draft (CD) prepared
- Developing standardized sampling and analytical methodologies with ASTM

Materials and Components Compatibility

- Performed testing of forklift tank materials to enable design qualification
- Added two additional Nickel alloy chapters to the Technical Reference

Safety Sensor Development

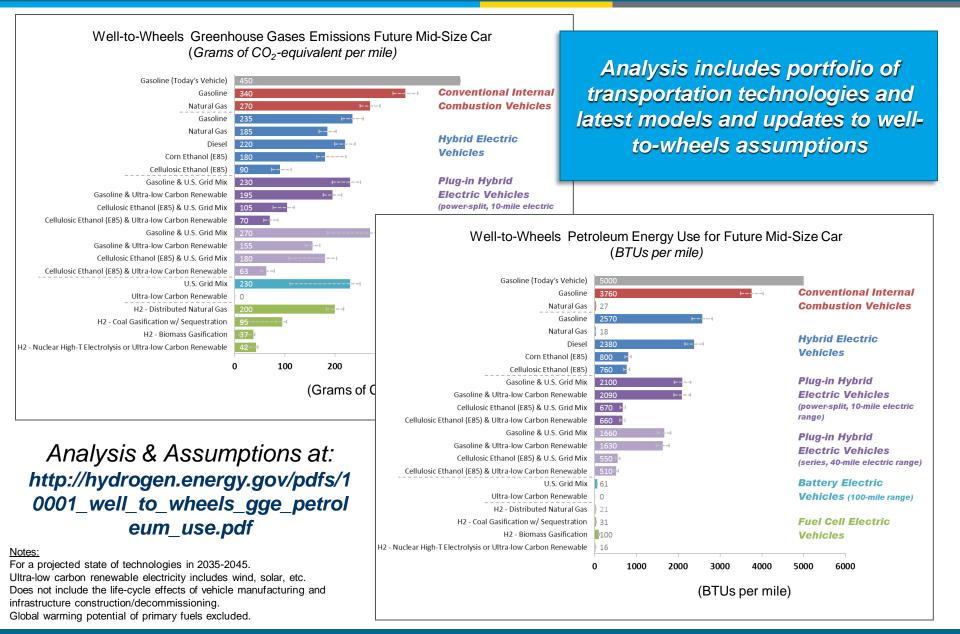
 Completed extensive life testing - 4,000 hrs and 10,000 thermal cycles - of a robust, ceramic, electrochemical Hydrogen safety sensor with exceptional baseline stability and resistance to H2 signal degradation

Technical Performance Requirements

Sensitivity: 1 vol% H_2 in air	Temperature: -40°C to 60°C
Accuracy: 0.04-4% ±1% of full scale	Durability: 5 yrs without calibration
Response time: <1 min at 1% And <1 sec at 4% Recovery <1 min	Low cross-sensitivity to humidity, H ₂ S, CH ₄ , CO, and VOCs

Continue critical R&D needed for the development of codes and standards and develop and disseminate safety best practices and lessons learned.

The Program will continue emphasis on:


- R&D to ensure the scientific basis for Safety, Codes and Standards.
- Coordination and harmonization of regulations, codes and standards (RCS) through international and domestic technical working groups.
- Coordination and dissemination of relevant hydrogen safety information.

Key R&D areas (*core technologies*):

- Technically validated hydrogen release and materials characterization data needed for development and revisions of codes and standards.
- Risk assessment and establishment of protocols to identify and mitigate risk.
- Testing protocols for components and systems including high pressure vessels.
- Hydrogen quality, measurement, and metering.
- Adoption and harmonization of test methodologies for hydrogen fuel specification.
- Coordination and dissemination of relevant hydrogen safety information.

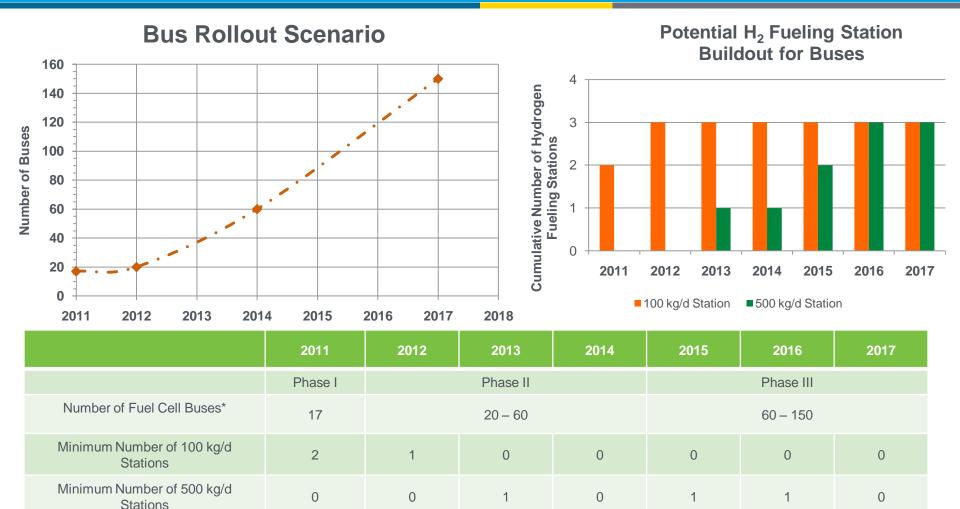
Systems Analysis — WTW Updates

Lifecycle Costs: Light Duty Vehicles

ENERGY Energy Efficiency & Renewable Energy

Advanced Light Duty Vehicle Preliminary Analysis Technologies (Mid-Size) 2015 **FCV** 50 Lifetime cost of diesel cents/mi **EV100** ownership is roughly equivalent to an SI ICE 45 HEVs and PHEV10s Adv C 2009 Ref SI are competitive. **_** PHEV40 Costs 40 Energy storage costs are still high for (2009\$) **HEV** PHEV40s and EVs Lifecycle 35 2030 · Hybrid, electrified, and fuel cell vehicles are 30 PHEV10 competitive Vehicle Diesels cost is still 25 roughly equivalent to an SI ICE 2010 2015 2020 2025 2030

* No state, local or utility incentives are included. Federal subsidy policies (e.g., Recovery Act 09 credits for PHEVs) are also excluded. Fuel prices follow AEO09 high oil projections (gases rises from \$3.07 in 2010 to \$5.47 in 2030; diesel increases from \$3.02 in 2010 to \$5.57 in 2030); fuel taxes are included in EIA estimates. The vehicle cost range represents a range of potential carbon prices, from \$0 to \$56 (the centerline is plotted at a carbon price of \$20). Technology costs are estimated based on a 50% ("average") likelihood of achieving program goals.

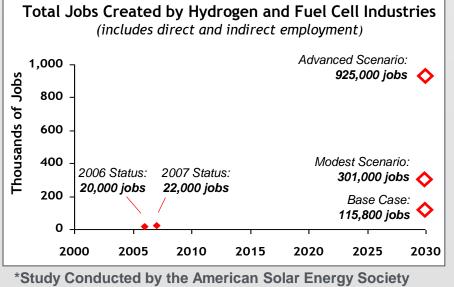

Source: Presentation to ERAC.

November 30, 2010

Fuel Cell Bus Buildout Analysis

Potential deployment strategies envisioned for Fuel Cell Buses deployment scenario analysis identified in California's Action Plan.

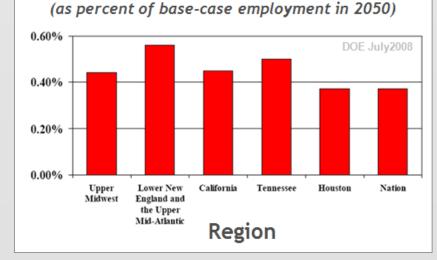
Notes: The station requirements for the fuel cell bus build out was based on ANL analysis with the HDSAM delivery model. **Source:* California Fuel Cell Partnership, *Action Plan*, April 2010 based on industry input.


Fuel Cells - The Economic Potential

The fuel cell and hydrogen industries could generate substantial revenues and job growth.

Renewable Energy Industry Study*

- Fuel cells are the third-fastest growing renewable energy industry (after biomass & solar).
- Potential U.S. employment from fuel cell and hydrogen industries of **up to 925,000 jobs** (by 2030).
- Potential gross revenues up to \$81 Billion/year (by 2030).



*Study Conducted by the American Solar Energy Society www.ases.org/images/stories/ASES/pdfs/CO_Jobs_Final_Report_ December2008.pdf

DOE Employment Study

- Projects net increase of 360,000 675,000 jobs.
- Job gains would be distributed across up to 41 industries.
- Workforce skills would be mainly in the vehicle manufacturing and service sectors.

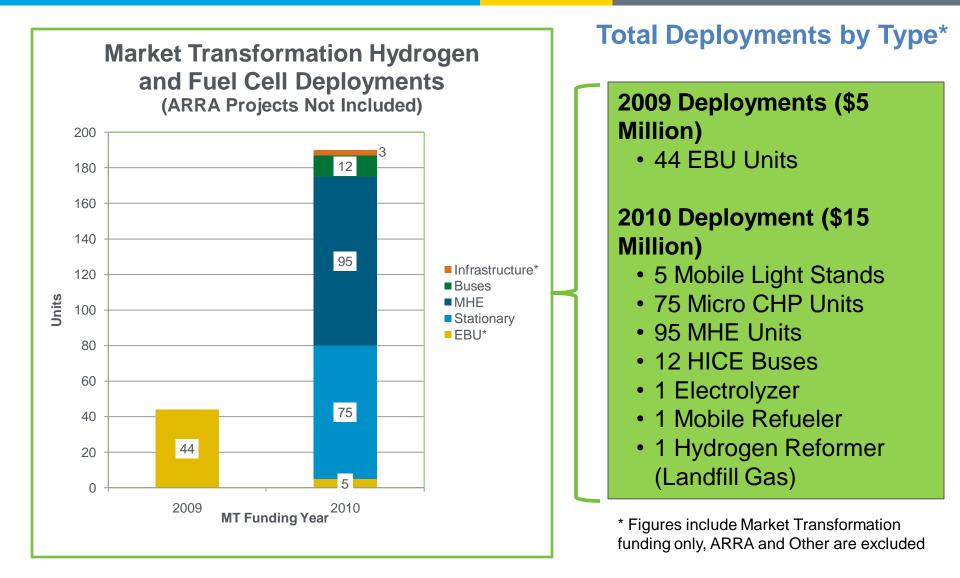
Employment Growth Due to Success of Fuel Cell & H₂ Technologies

www.hydrogen.energy.gov/pdfs/epact1820_employment_study.pdf

Systems Analysis: Key FY 2012 Activities

Maintenance/development of analytical models and tools to help quantify program effects such as GHG, criteria pollutants and petroleum use. Identify research, analyze environmental trade-offs, and evaluate business cases for various applications, such as material handling, CHP, and stationary and portable power.

The Systems Analysis Subprogram will focus on:

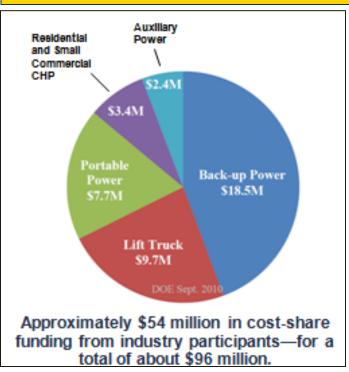

- Updating models for program analysis, using cost, performance and environmental information from independent reviews and research projects.
- Providing support and input to program elements, such as go/no-go decisions and risk analysis.
- Assessing market penetration, job creation, and opportunities for fuel cell applications in the near term—material handling, back-up power, and residential/commercial CHP markets.
- Ensuring analysis consistency and transparency by updating and maintaining analysis portfolio and information databases.

Key analysis areas:

- Environmental benefits of utilizing renewable fuels—benefits of using landfill gas and other types of biogases, and miscellaneous sources of gases (such as unused streams from industrial processes) for stationary fuel cells will continue to be updated on a well-to-wheels basis.
- Cross-cutting analysis of tradeoffs and synergies e.g.infrastructure and resource availability.
 - Assess business cases of biogas cleanup for stationary fuel applications; infrastructure applications and integration in a domestic fueling network; and fuel cell Combined Heat and Power (CHP) applications for Federal facilities.
- Market studies—assessment of opportunities for early market applications & job growth.
- Effects of a policies (e.g. federal fuel cell acquisition program)—on cost reduction and job creation.
- **Infrastructure analysis** assessment of gaps and drivers for early market infrastructure cost for transportation and power generation applications.

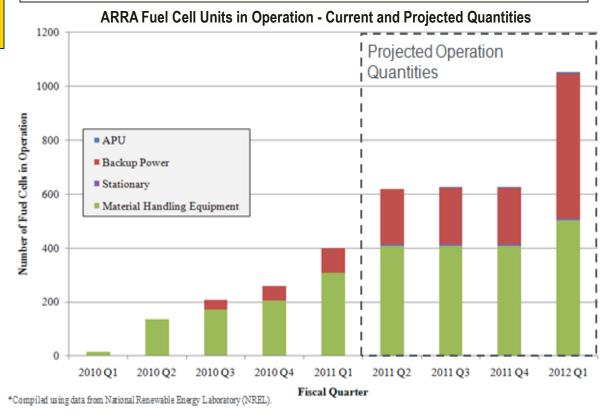
Market Transformation Deployments

ENERGY Energy Efficiency & Renewable Energy


Speed & Scale

\$42 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects to deploy up to 1,000 fuel cells

Exceeded 2010 target for Recovery Act fuel cell installations by more than 90% at 230 fuel cells installed:


 206 lift trucks (35 with FedEx, 14 with Nuvera, 98 with Sysco, and 59 with GENCO)

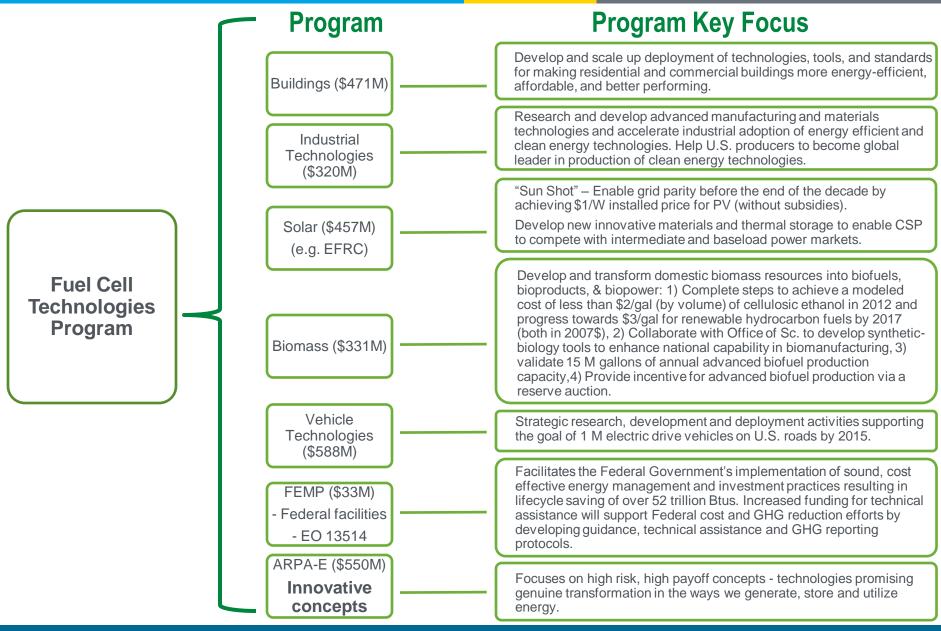
• 24 telecommunication backup power units provided by ReliOn for AT&T.

Major companies such as FedEx, Coca Cola, Whole Foods, Sprint, AT&T, Sysco and Wegmans are installing fuel cells

Federal Agencies: DOD-DLA: ~120 fuel cell life trucks to four distribution centers, FAA :~26 back-up power fuel cells ; CERL: >200 kW in fuel cell backup power across nine federal installations.

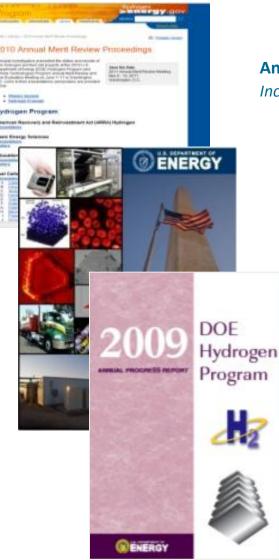
EERE Budget: FY09 – FY12

Funding (\$ in thousands)						
Activity	FY 2009	FY 2010 Current Approp.	FY 2012 Request			
Biomass and Biorefinery Systems	214,245	216,225	340,500			
Building Technologies	138,113	219,046	470,700			
Federal Energy Management Program	22,000	32,000	33,072			
Geothermal Technology	43,322	43,120	101,535			
Hydrogen Technology	164,638	0	0			
Hydrogen and Fuel Cell Technologies	0	170,297	100,450			
Water Power	39,082	48,669	38,500			
Industrial Technologies	88,196	94,270	319,784			
Solar Energy	172,414	243,396	457,000			
Vehicle Technologies	267,143	304,223	588,003			
Weatherization & Intergovernmental Activities	516,000**	270,000	393,798			
Wind Energy	54,370	79,011	126,859			
Facilities & Infrastructure	76,000	19,000	26,407			
Strategic Programs	18,157	45,000	53,204			
Program Direction	127,620	140,000	176,605			
Congressionally Directed Activities	228,803	292,135	0			
RE-ENERGYSE	0	0	0			
Adjustments	-13,238	0	-26,364			
Total	\$2,156,865	2,216,392	3,200,053			


* SBIR/STTR funding transferred in FY 2009 was \$19,327,840 for the SBIR program and \$2,347,160 for the STTR program.

** Includes \$250.0 million in emergency funding for the Weatherization Assistance Grants program provided by P.L. 111-6, "The Continuing Appropriations Resolution, 2009."

DOE Collaboration Opportunities


ENERGY Energy E Renewa

Energy Efficiency & Renewable Energy

Key Program Documents

Annual Merit Review & Peer Evaluation Proceedings

Includes downloadable versions of all presentations at the Annual Merit Review

• Latest edition released June 2010

www.hydrogen.energy.gov/annual_review10_proceedings.html

Annual Merit Review & Peer Evaluation Report

Summarizes the comments of the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting

• Released January 2011

http://www.hydrogen.energy.gov/annual_review10_report.html

Annual Progress Report

Summarizes activities and accomplishments within the Program over the preceding year, with reports on individual projects

• Released February 2011

www.hydrogen.energy.gov/annual_progress.html

Next Annual Review: May 9 – 13, 2011

Washington, D.C. http://annualmeritreview.energy.gov/

FCT Updates and Accomplishments

U.S. DEPARTMENT OF

ENERGY Energy Efficiency & Renewable Energy Hydrogen and Fuel **Cell Technologies** Program: Fuel Cells Fuel Cells Hydrogen is a versatile energy ENERGY Energy Efficiency & Benewable Energy that can be used to power ne end-use energy need. The fuel an energy conversion device efficiently capture and use th of hydrogen — is the key to m Early Markets: Fuel happen Cells for Material to Batteries Stationary fuel cells can be u Handling Equipment backup power, power for rem tions, distributed power gene 8 times lower refueling/recharging labor cost and cogeneration (in which et Overview released during electricity ge Fuel cells can be used as a power used for other applications). ENERGY Energy Efficiency & FUEL CELL TECHNOLOGIES PROGRAM

cells can efficiently provide powe

at the same time producing no har

air pollutants at the point of use.

Polymer electrolyte membrane (al

called proton exchange membrane

'PEM') fuel cells can be fueled wi

drogen gas or can be designed to c

directly using methanol fuel. PEM

cells are commercially available to

for several mainstream application

of these emerging markets is in ma

handling equipment (also known a

trucks which includes forklifts, pal

let jacks, and stock pickers), one o

fasting growing applications for fu

The Case for Fuel Cells

Established material handling equip

ment uses propane and diesel-fuel

engines along with lead-acid batte

which tend to be used for indoor f

where emissions must be controlly

technologies

Fuel cells can power almost a application that typically uses ies, from hand-held devices to penerators.

Fuel cells can also power our tion, including personal vehic buses marine vessels and of vehicles such as lift trucks an support equipment, as well as auxiliary power to traditional tion technologies. Hydrogen of particularly important role in by replacing the imported pet currently use in our cars and

Why Fuel Cells?

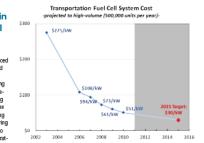
Fuel cells directly convert the energy in hydrogen to electric pure water and potentially us the only byproducts. Hydrog fuel cells are not only pollution they can also have more than the efficiency of traditional of technologies

A conventional combustion-b plant typically generates elect at efficiencies of 33-35%, wh

Oxygen Molecul FUEL CELL TECHNOLOGIES PROGRAM Summary of Fuel Cell Technology Cost Advantages Compared 1.5 times lower maintenance cos

for many end-uses in stationary, tra tation, and portable power applica By directly converting the chemic energy in hydrogen to electricity.

FUEL CELL TECHNOLOGIES PROGRAM


Progress and Accomplishments in Hydrogen and Fuel Cells

The U.S. Department of Energy's (DOE's) efforts have greatly advanced the state of the art of hydrogen and fuel cell technologies-making significant progress toward overcoming many of the key challenges to widespread commercialization, including reducing the cost and improving the durability of fuel cells and improving technologies for producing, delivering and storing hydrogen. DOE has also made major advances by demonstrating and validating the technologies under real-world conditions, supporting early markets through Recovery Act deployments, and leveraging domestic and international partnerships to advance the pace of commercialization.

Reducing the Cost and Improving the Durability and Performance of Fuel Cells Reduced the cost of automotive

fuel cells by 30% since 2008 and 80% since 2002 (from \$275/kW in 2002 to \$51/kW in 2010, based on projections of high-volume manufacturing costs).

These cost-reductions reflect numerous individual advances in key areas, including the development of a durable membrane electrode assembly (MEA) with low platinum group metal (PGM) content (this MEA simultaneously met the 5,000-hour durability target, with a PGM loading of <0.2 g of PGM08971.

strated more than 2500-hou (75,000 miles) durability of fuel cell systems in vehicles operating under gas: projected costs of hydrogen (assuming high-volume production and wideal-world conditions, with less than spread deployment) have been reduced to 0% degradation. This is more than \$3.00/gallon gasoline equivalent (gge)-a double the maximum durability of 950 hours cost that is competitive with gasoline. demonstrated in 2006. Producing hyd

os: costs have been

reduced for several pathways, including

wind electrolysis, ethanol reforming, and

biomass gasification. Key examples of

for distributed hydrogen production by

sion of sunlight in hydrogen-producing

minimizing chlorophyll antennae to

advances include: reducing capital costs

water electrolysis by over 35% since 2008

and improving the photosynthetic conver-

sor: costs have been reduced by 30% for

proved the performance of tionary fuel cells, including development of a solid-oxide fuel cell for microcombined heat and power applications with a 24% increase in system power density, which has enabled a 33% reduction in stack volume and a 15% reduction in stack weight.

Improving Technologies tube-trailer delivery of high-pressure gas, for Producing, Delivering, 20% for pipeline delivery of high-pressure and Storing Hydrogen gas, and 15% for tanker truck delivery of liquid hydrogen Reduced the projected cost o

Fact sheets on:

- FCT's Subprograms
 - Fuel Cells
 - Production & Delivery
 - Storage
 - Safety, Codes & Standards
 - Technology Validation
 - Case studies
 - **Backup Power**
 - MHF
 - CHHP
- Financing
- Accomplishments

Examples of DOE-funded Partners and Locations – Fuel Cell Technologies Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Thank you

Sunita.Satyapal@ee.doe.gov

www.hydrogenandfuelcells.energy.gov