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Objectives 
• To develop and validate a two-phase, three-dimensional transport 

model for simulating PEM fuel cell performance under a wide range    
of operating conditions. 

•	 To apply the validated PEM  fuel cell model to improve fundamental 
understanding of key phenomena involved and to identify rate-limiting 
steps and develop recommendations for improvements so as to 
accelerate the commercialization of fuel cell technology. 

• The validated transport model can be employed to improve and 
optimize PEM fuel cell operation. Consequently, the project helps: 
i) address the technical barriers on performance, cost, and durability; 
and ii) achieve DOE’s near-term technical targets on performance, 
cost, and durability in automotive and stationary applications. 

DOE 2015 (Automotive) and 2011 (Stationary) Technical Targets  
Performance Cost Durability 

Automotive (2015) 650 W/L or 50% energy efficiency $30/kW 5,000 hours
 
Stationary  (2011) 40% electrical energy efficiency $750/kW 40,000 hours
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Approach 

Our approach is both computational and experimental: 
• Numerically, develop a two-phase, 3-D, transport  model for 

simulating PEM fuel cell performance under a wide range of  
operating conditions. 

• Experimentally, measure model-input parameters and generate 
model-validation data. 

• Perform model validation using experimental data available from    
the literature and those generated from team members. 

• Apply the validated transport model to identify rate-limiting steps 
and develop recommendations for improvements. 

A staged approach will be adopted in model development and validation: 
Single phase (dry) → Partially two-phase (dry-to-wet transition) → Fully two phase (wet) 
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Relevant Prior Work 

Many PEM fuel cell models (mostly piece-wise) have been published: 
• Simple 1-D models: e.g., Springer et al. (1991), Bernardi and Verbrugge (1992) 
• 2-D models:	 e.g., Nguyen and White (1993), Gurau et al. (1998), Um et al. (2000) 
• Quasi 3-D models: e.g., Kulikovsky (2003), Muller et al. (2007) 
• 3-D models:	 e.g., Dutta et al. (2000), Zhou and Liu (2001), Berning et al. (2002), 

Mazumder & Cole (2003a), Li & Becker (2004),  Um & Wang (2004), 
Lum and McGuirk (2005), Hu and Fan (2006), Meng (2006) 

• Reduced dimen. stack models: e.g., Chang et al. (2007), Freunberger et al. (2008) 

The published models can also be classified as single-phase or two-phase: 
• Single-phase: e.g., Dutta et al. (2000), Um et al. (2000), Mazumder & Cole (2003a) 
•	 Two-phase: e.g., Wang et al. (2001), Natarajan & Nguyen (2001), You & Liu (2002), 

Berning and Djilali (2003), Mazumder and Cole (2003b), Weber et al. 
(2004), Pasaogullari and Wang (2004), Meng and Wang (2005) 

Two big deficiencies of prior models: 1) piece-wise (treat only some components) 
2) narrow range of operating conditions 

(e.g., either very dry or fully humidified) 
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Approach: Develop a unified model and computer code for 
a wide range of operating conditions (dry, dry-wet, and wet) 
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Luo, Ju, and Wang, 
J. Electrochem Soc, 
154, B316-B321(2007) 

• Dry-to-wet transition (moving boundary) inside fuel cells 
is the greatest challenge of water management modeling. 
• Prior work (Luo et al., JES 2007) developed a basic 
numerical model for single straight-channel fuel cells. 
• Developing a comprehensive numerical model for 
commercial-scale, complex flowfield fuel cells will be 
attempted in this project. 
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Approach: Compare model predictions with 
spatially-resolved experimental measurements 
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• Single-phase model predictions have been validated by current-distribution
data with good agreement. 
• Under two-phase conditions, total water content in PEM fuel cells has also 
been validated against neutron radiography (NR) data. 
• This project will attempt comparison of cross-sectional water distributions 
measured by neutron imaging and predicted by two-phase PEM fuel cell model. 
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Approach: areas for model improvements 
• Water and proton transport in membrane under a wide range      


of water content 

• Water transport mechanism(s) and structure-transport 

relationship in catalyst layers 
• Liquid-water transport with condensation or evaporation              

in gas diffusion layers (GDLs) and microporous layers (MPLs) 
• Water-flux interfacial condition at the GDL/channel interfaces 
• Two-phase (liquid and gas) flow in gas flow channels 
• Integration of sub-models into a coherent cell model 
• Numerical efficiency and model robustness 
• Stack models with higher fidelity (e.g., full dimensions) 
• More rigorous and complete model validation 
• Uncertainty analyses 
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Project timeline and milestones
 

Task/Milestone 
PY1 (FY09-FY10) PY2 (FY11) PY3 (FY12) PY4 (FY13) 

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 

1.1/Physical & electro- chemical, 
mathematical, sub-model development M6 

1.2/Numerical implementation and 
algorithm development M7 

1.3/Integrated computer code development 
and testing 

M1 
G1 

M3 
G2 

M8 
G3 

2.1/Model-input parameter measurements M2 M4 M9 

2.2/Model-validation data generation M2 M4 M9 

3.1/Model validation for single-cell model in 
the partially two-phase regime 

M5 
G2 

3.2/Model validation for single-cell model in 
the fully two-phase regime 

M10 
G3 

3.3/Model validation for short-stack model M11 

4/Identifying rate-limiting steps and 
developing recommendations for 
improvements in automotive applications 

M12 

4 /Identifying rate-limiting steps and 
developing recommendations for 
improvements in stationary applications 

M12 

5.1/Public dissemination of model via
publications M13 

5.2/Providing instructions for exercising 
model M13 

5.3/Compilation of data generated in project 
8 
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List of milestones
 

Disseminate and document models, and compile data generated 
during model development and validation 

M13PY4/Q45/SNL, PSU, LBNL, LANL, 
Ballard, Ford 

Identify rate-limiting steps and develop recommendations for 
improvements in stationary and transportation and applications 

M12PY4/Q34/Ballard, Ford, PSU, SNL, LBNL 

Perform validation of 3-D, two-phase, short-stack model M11PY4/Q23/PSU, SNL, Ballard, Ford 

Perform validation of 3-D, fully two-phase, single-cell model M10PY3/Q43/PSU, SNL, Ballard, Ford 

Measure model-input parameters and generate model-validation 
data for fully two-phase operating regime 

M9PY3/Q42/LANL, PSU, Ballard, Ford 

Develop a 3-D, two-phase, short-stack model M8PY3/Q41/PSU, SNL 

Complete numerical implementation and algorithm development M7PY3/Q41/PSU, SNL, LBNL 

Complete development of physical/electrochemical, mathematical, 
sub-models 

M6PY3/Q41/LBNL, PSU, SNL 

Perform validation of the 3-D, partially two-phase, single-cell model M5PY2/Q43/PSU, SNL, Ballard, Ford 

Measure model-input parameters and generate model-validation 
data for partially two-phase operating regime 

M4PY2/Q32/LANL, PSU, Ballard, Ford 

Develop a 3-D, fully two-phase, single-cell model M3PY2/Q41/SNL, PSU, LBNL 

Measure model-input parameters and generate model-validation 
data for single-phase operating regime 

M2PY1/Q42/LANL,PSU, Ballard, Ford 

Develop a 3-D, partially two-phase, single-cell model M1PY1/Q41/SNL, PSU, LBNL 

DescriptionSymbolYear/QtrTask/org 



 

FY10/Q4: 

Go/no-go decision points 

Go/no-go (G1): determine whether or not we should proceed to develop  
a 3-D, fully two-phase, single-cell model. 

• A go decision means that we shall proceed to develop a 3-D, fully two-phase, single-cell model. 
• A no-go decision means either we go back to improve the sub-models or discontinue the project. 

FY11/Q4: 
Go/no-go (G2): determine whether or not we should proceed to develop  

a 3-D, two-phase, short-stack model. 
• A go decision means that we shall proceed to develop a 3-D, two-phase, short-stack model. 
• A no-go decision means either we go back to improve the sub-models or discontinue the project. 

FY12/Q4: 
Go/no-go (G3): determine whether or not we should proceed to identify

rate-limiting steps and develop recommendations for 
improvements in both automotive and stationary applications. 

• A go decision means that we shall proceed to identify rate-limiting steps and develop 
recommendations for improvements in both automotive and stationary applications. 
• A no-go decision means either we go back to improve the models or discontinue the project. 
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Organizations Responsible for Project Work 
Sandia National Laboratories 

(Project Lead; model development, integration, testing, validation, dissemination) 

Pennsylvania State University 
(Model development, validation, and dissemination; numerical implementation;          


flow property measurements; optimization studies)
 

Lawrence Berkeley National Laboratory 
(Sub-model development, including membrane and GDL/GFC boundaries; 


model dissemination)
 

Los Alamos National Laboratory 
(Input parameter measurements, model-validation data generation) 

Ballard Power Systems 
(Input parameter, model-validation data and runs for stationary applications) 

Ford Motor Company 
(Guidance and recommendations of improvements for automotive applications) 
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Budget
 

Total (federal & matching): $1484K
FY09−FY10 

subtotal (federal): $1390K 
subtotal (matching): $94K 

SNL (federal): $685K 
PSU and Ballard (federal): $375K 
PSU & Ballard (matching): $94K 
LANL and LBNL (federal): $330K 

FY12 
Total (federal & matching): $1408K 

subtotal (federal): $1305K 
subtotal (matching): $103K 

SNL (federal): $563K 
PSU and Ballard (federal): $412K 
PSU & Ballard (matching): $103K 
LANL and LBNL (federal): $330K 

FY11 
Total (federal & matching): $1419K 

subtotal (federal): $1316K 
subtotal (matching): $103K 

SNL (federal): $574K 
PSU and Ballard (federal): $412K 
PSU & Ballard (matching): $103K 
LANL and LBNL (federal): $330K 

FY13 
Total (federal & matching): $1180K 

subtotal (federal): $1081K 
subtotal (matching): $99K 

SNL (federal): $475K 
PSU and Ballard (federal): $396K 
PSU & Ballard (matching): $99K 
LANL and LBNL (federal): $210K 

Total project funding over 4 years: $5491K (federal: $5092K; cost share: $399K)
 



Backup Vugraphs
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Sandia National Laboratories: 

Project Personnel or Participants 

Ken Chen, Brain Carnes 

Pennsylvania State University: 
Chao-Yang Wang, Christian Schaffer, Fangming Jiang, Gang Luo, Yan Ji 

Lawrence Berkeley National Laboratory: 
Adam Weber 

Los Alamos National Laboratory: 
Rod Borup, Rangachary Mukundan 

Ballard Power Systems: 
Silvia Wessel, David Harvey 

Ford Motor Company: 
Ron Brost 
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Approach: develop a numerically efficient short stack model 
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Approach: Address relationships among GDL pore 
structure, transport properties and cell performance (I) 
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Approach: Address relationships among GDL pore 
structure, transport properties and cell performance (II) 
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