> Powertech Labs Inc.

CNG & Hydrogen Tank Safety, R&D, and Testing

12.10.2009 | Presented by Joe Wong, P.Eng.

PRESENTATION OBJECTIVES

- Present experience from CNG in-service tank performance.
- □ The process of tank standards development.
- Discuss some of the current studies on Hydrogen tank development and safety.

POWERTECH - Hydrogen & CNG Services

- Certification testing of individual high pressure components
- Design Verification, Performance, End-of-Life testing of complete fuel systems
- Design, construction, and operation of Hydrogen Fill Stations
- Safety Studies
- Standards Development

Compressed Natural Gas Vehicles

9 million vehicles worldwide - 14,000 stations

Storage Tank Technologies

4 basic types of tank designs – pressure vessels

- □ Type 1 all metal
- □ Type 2 metal liner with hoop wrapped composite
- □ Type 3 metal liner with fully wrapped composite
- □ Type 4 Plastic liner with fully wrapped composite

Tank Designs in CNG Service

- Primarily use steel tanks for CNG
- Glass fiber reinforced tank designs in CNG use since 1982
- □ Carbon fiber reinforced tank designs in CNG use since 1992
- Many tens of thousands carbon fiber tanks now in service (primarily transit bus use)
- □ Carbon fiber performance far superior to glass fibers
- □ Service pressures 200 bar and 250 bar

Tank Designs in Hydrogen Service

- □ Primarily use composite tanks for hydrogen fuel cell vehicles
- 250 bar carbon fiber reinforced tank design in fuel cell bus demonstration in 1994.
- □ Storage pressures increased to 350 bar in 2000
- Today, most auto OEMs have 700 bar tanks for on-board storage
- □ 500 km range with 5kg H2

Standards Development - CNG & Hydrogen History

- In 1983 requested by Gas Utility to investigate CNG cylinder safety
 - Determined a lack of safety standards :
 - ISO 11439 for CNG cylinders
 - NGV2 for CNG containers
 - CSA B51 for CNG cylinders
- In 1994 requested by Ballard to determine if safe to use CNG cylinders for hydrogen
 - Determined a lack of any standards Powertech now:
 - ISO 15869 for Hydrogen tanks
 - HGV2 for Hydrogen tanks
 - CSA B51 (first published hydrogen fuel tank standard in world)
 - HGV3.1 for H₂ vehicle components
 - ISO 17268 for H₂ fill connectors
 - EIHP (European Integrated Hydrogen Program)
 - HGV4.3 for Station Performance
 - SAE J2578
 - SAE J2579
 - SAE J2601

Standards Development

CNG Standards developed from in-service experience

- Vehicle service conditions
- **End user requirements**
- In-service failures / known failure mechanisms
- □ In-service abuse
- Collision
- □ Manufacturing problems
- Design problems

Vehicle Service Conditions

Road conditions are very severe environments for pressure vessels

□ Temperature extremes (-40°F to +185 °F in vehicles)

□ Multiple fills (pressure changes) = fatigue cracking

Exposure to road environments and cargo spillage

Vibration

Vehicle fires

Collision

Standards require tests or installation requirements for all these conditions

Consumer Desires for CNG or Hydrogen storage

Same requirements as gasoline vehicles

- ☐ Sufficient range
- **Same weight**
- □ Same storage space in trunk
- ❑ Same level of safety
- Same cost
- ❑ Same fueling procedures

In-service Failures

- Powertech has been testing CNG storage systems since 1983
- Powertech has maintained a cylinder failure database through world wide contacts
- Examined CNG cylinder field failure database to determine if trends evident
- Limited to incidents involving catastrophic rupture of cylinders, although major leaks attributed solely to the cylinder were included
- □ From 2000-2008, there were 26 CNG cylinder failures.
- Other multiple cylinder failures attributable to "leakage failure mode":
 - Type 1 steel pinhole leaks (<50)
 - Type 4 plastic liner leak incidents (100's)

In-Service CNG Tank Ruptures

FAILURE INCIDENTS REPORTED BY FAILURE CAUSE

Data classified according to eight unique failure causes:

- □ <u>Mechanical Damage</u> External abrasion and/or impact
- Environmental Damage External environment assisted, typically SCC
- Overpressure Faulty fueling equipment or faulty CNG cylinder valves
- □ <u>Vehicle fire</u> Faulty PRDs or lack of PRDs; localized fires
- Plastic Liner Issues Man. defects incl. cracking at end boss/liner interface, flawed welds, liner seal failures
- Metal Liner Issues Man. defects incl. pinhole leaks, laminations, poor heat treat practice

FAILURE INCIDENTS REPORTED BY FAILURE CAUSE

FAILURE INCIDENTS REPORTED BY CYLINDER TYPE

Type 1 steel cylinders involved in nearly 50% of failure incidents

Cylinder Type

Powertech

FAILURE INCIDENTS REPORTED BY VEHICLE TYPE

- Aftermarket vehicles represent just over 50% of failure incidents
- Data is related as most aftermarket conversions employ low cost/readily available Type 1 cylinders
- Many of the installations less likely to follow sound engineering practice (regarding use of standards, materials/workmanship quality, installation codes, maintenance/inspection procedures)

In-service Damage Experience

Tank dragged on road under vehicle after support strap broke.

Stress corrosion cracking due to acid attack on fibers

CNG vehicle crash - no tank rupture

Type 4 Composite Tank Collision Damage

Tanks mounted on CNG bus roof. The bus impacted a low overhead, collapsing the roof. Tank still exceeded minimum burst pressure. Tanks mounted on CNG bus roof. The bus impacted a low overhead, collapsing the roof. Tank punctured, released gas but did not rupture.

Standard Tests for Design Qualification

Performance tests were designed and validated including:

- □ Ambient Cycling Test
- Environmental Test
- Extreme Temperature Pressure Test
- Hydrostatic Burst Test
- Composite Flaw Test
- Drop Test
- Accelerated Stress Rupture Test
- Permeation Test
- □ Natural Gas or Hydrogen Cycling Test
- Bonfire test
- □ Gunfire Penetration Test

Tank Testing - Hydraulic Pressure

Environmental and chemical effects

Burst Test

Powertech Cylinder Test Facilities

- Burst test up to 2,800 bar
- Hydraulic pressure cycling up to 1,500 bar

Flaw/Damage Tolerance

Drop Test
Povvertech

Development of 700 bar Tanks

Wall thickness comparison - 35 MPa vs 70 MPa cylinders

Destructive Safety Testing Facilities

- Bonfire Testing
- □ Bonfire without PRD
- Penetration (Gunfire) Testing
- □ Flammable Gas Ignition
- □ High Pressure Gas Release
- □ Crush Testing (Static and Dynamic)
- Laminate Damage Tolerance
- Vehicle Fire
- Vehicle Crash

CNG and Hydrogen Cylinder Gunfire Penetration Tests

Vehicle Fire Tests - CNG & Hydrogen Tanks

CNG

Hydrogen

Test commissioned by:

Dynamic Crush Test Overview -Valve end impact @ 35 MPa hydrogen

Dynamic Crush Test Detail -Valve end impact @ 35 MPa hydrogen

Filling Conditions with Hydrogen

- How to ensure a "full' fill?
- Heating of H2 during filling
- 700 bar @15C and 875 bar @ 85C
- Communication between vehicle & dispenser?
- Flow control?
- Pre-cooling of gas?

Powertech

27 Figure from :Schneider, J., Gambone, L., McDougall, M., et al., "70 MPa Hydrogen Storage Fueling Testing", <u>Proceedings of the Zero Regio Workshop, World Hydrogen Technologies Conference 2007</u>, November 4-7, 2007, Montecatini, Italy.

Multi-Client 70 MPa Hydrogen Fast Fill Study

Outputs of the study:

- Minimum fueling time at each ambient condition to safely fill all fuel systems
- □ Pre-cooling levels for each ambient condition
- □ Energy required for pre-cooling
- □ Temperature gradients throughout the fuel system
- Durability of fuel system under extreme fueling conditions
- Performance data of station components (flow meter, flow controller, nozzles, hoses, compressors, etc.)

Consortium members: Air Liquide, BP, Nippon Oil, Sandia (US DOE), Shell, Iwatani, Chrysler, Ford, GM, Nissan, Honda, Toyota.

70 MPa Hydrogen Fast Fill Test Facility

Fueling Station Simulator

Fuel System Chamber -40C to +50C

Ground Storage Chamber 875 bar -40C to +50C

70 MPa Fast Fill - 3 Minutes - Ambient Temp -40C

OEM 2 +50C, -30C PC, 3 Minute CPRR

*Powertech Fuel System of same size and type as Nissan Fuel System

Multi-Client 70 MPa Fast Fill Study OEM-1 Fuel System

Ambient Temperature	Fueling Time	Pre-Cooling Temperature
-40°C	3 Minutes	No Pre-Cooling
-10°C	3 Minutes	No Pre-Cooling
0°C	3 Minutes	No Pre-Cooling
15°C	3 Minutes	No Pre-Cooling
30°C	3 Minutes	0°C
50°C	3 Minutes	-15°C*

*Test repeated with Powertech system of same type and volume

SUMMARY

- In-service experience with CNG tanks have provided input into the development of CNG & Hydrogen tank standards
- Higher pressures are required for hydrogen storage in order to achieve the range targets for vehicles.
- Studies are underway to provide data to standards being developed by organizations such as SAE, ISO, and CSA.
- \Box Areas of study include:
 - Give safety
 - □ Fueling protocol
 - Impact resistance