

DOE Hydrogen Program

Mass Production Cost Estimation for Direct H₂ PEM Fuel Cell Systems for Automotive Applications

Brian James, Jeff Kalinoski & Kevin Baum

Status Presentation to Fuel Cell Tech Team September 24, 2008

Directed Technologies, Inc. 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 (703) 243-3383 [v] (703) 243-2724 [f]

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Base Period:
 - 100% complete
 - Feb 17, 2006 to Feb. 16, 2008
- Option year 1 of 3:
 - 65% complete
 - Started Feb 16, 2008

Budget

- Total project funding
 - \$325K (2 year base period)
 - \$182k (opt. yr. 1)
 - Contractor share: \$0
- Funding for FY 2008
 - \$182k

Barriers

- Manufacturing costs
- Materials costs (particularly precious metal catalysts)

DOE Cost Targets

	Characteristic	Units	2008	2010	2015
	Stack Cost	\$/kW _{e (net)}	-	\$25	\$15
1	System Cost	\$/kW _{e (net)}	-	\$45	\$30

Collaborations

 Extensive interaction with industry/researchers to solicit design & manufacturing metrics as input to cost analysis.

- Work since the AMR has been researching and applying changes to the determine 2008 system
- Primary focus was BOP components

page 3

Bipolar plate coatings and alternative gasketing methods were also improved

Objectives

- Identify the <u>lowest cost system design</u> and <u>manufacturing methods</u> for an 80 kW_e direct-H₂ automotive PEMFC system based on 3 technology levels:
 - 2008 status technology
 - 2010 projected technology
 - 2015 projected technology
- 2. Determine costs for these 3 tech level systems at 5 production rates:
 - 1,000 vehicles/year
 - 30,000 vehicles/year
 - 80,000 vehicles/year
 - 130,000 vehicles/year
 - 500,000 vehicles/year
- 3. Analyze, quantify & document impact of system performance on cost
 - Use cost results to guide future component development

Project covers complete FC system (specifically excluding battery, traction motor/inverter, and storage)

General Rules

- 80kW_{net} system (90 kW_{gross} for 2008 system)
- 1k to 500k annual system production
- U.S. labor rates: \$60/hr (fully loaded)
- \$1,100/troy oz. Pt cost used for consistency (currently ~\$1,370/troy oz.)

Some costs NOT included:

- 10% capital cost contingency
- Warranty
- Building costs (equipment cost included but not building in which equipment is housed)
- Sales Tax
- Non-Recurring Engineering Costs

DTI's DFMA[®]-Style Costing Methodology

- DFMA[®] (Design for Manufacturing and Assembly) is a registered trademark of Boothroyd-Dewhurst, Inc.
 - Used by hundreds of companies world-wide
 - Basis of Ford Motor Co. design/costing method for past 20+ years
- DTI practices are a blend of:
 - "Textbook" DFMA[®], industry standards & practices, DFMA[®] software, innovation and practicality

Estimated Cost = (Material Cost + Processing Cost + Assembly Cost) x Markup Factor

Manufacturing rate cost factors:

Methodology Reflects Cost of Under-utilization: 1. **Material Costs** Used to calculate **Manufacturing Method** 2. **Capital Cost** Initial annual Capital 3. **Machine Rate** Installation **Expenses Recovery Factor Tooling Amortization** 4. based on: Maint./Spare Parts Equipment Life Operating Utilities 50 Interest Rate **Expenses Miscellaneous** Corporate Tax Rate Machine Rate, \$/min 40 30 Annual Annual Operating Capital 20 **Payments Machine Rate** Repayment 10 (\$/min) **Annual Minutes of** 0 **Equipment Operation** 0 0.2 0.4 0.6 0.8 Machine Utilization (of 14 hr day) DIRECTED page 6 TECHNOLOGIE

Key Technical Targets Define System

		2007 Status	2008 Status	2007 Status	2008 Status	2007 Status	2008 Statu
OOE Tech. Targets that drive analysis:		Curi (2007,	2008)	20	10	20	15
Stack Efficiency @ Rated Power	%	55%	55%	55%	55%	55%	55%
MEA Areal Power Density @ Peak Power	mW/cm ²	583	525	1,000	1,000	1,000	1,000
Total Pt-Group Catalyst Loading	mg PGM/cm ²	0.35	0.21	0.30	0.30	0.20	0.20
Key Derived Performance Parameters:							
System Gross Electric Power (Output)	kW	90.3	90.3	86.8	86.8	87.1	87.1
Active Area	cm ²	417	463	233	233	234	234
Cell Voltage @ Peak Power	V/cell	0.677	0.677	0.677	0.677	0.677	0.677
Operating Pressure (Peak)	atm	2.3	2.3	2.0	2.0	1.5	1.5

• A few key DOE Technical Target values are used to anchor system definition

All other system parameters flow from DTI calculations & judgment

System Comparison

	2008 Technology	2010 Technology	2015 Technology		
Power Density (mW/cm ²)	525 (was 583)	1,000	1,000		
Total Pt loading (mg/cm ²)	0.21 (was 0.35)	0.3	0.2		
Operating Pressure (atm)	2.3	2	1.5		
Peak Stack Temp. (°C)	70-90	99	120		
Membrane Material	Nafion on ePTFE	Advanced High-Temperature Membrane	Advanced High-Temperature Membrane		
	Aluminum Radiator,	Smaller Aluminum Radiator,	Smaller Aluminum Radiator,		
Radiator/Cooling System	Water/Glycol coolant,	Water/Glycol coolant,	Water/Glycol coolant,		
	DI filter	DI filter	DI filter		
Pinolar Diatos	Stamped SS 316 (uncoated)	Stamped SS 316 (uncoated)	Stamped SS 316 (uncoated)		
Bipolar Plates	Future options: SS 304 with Coating	Future options: SS 304 with Coating	Future options: SS 304 with Coating		
Air Commencian	Twin Lobe Compressor,	Centifugal Compressor,	Centifugal Compressor,		
Air compression	Twin Lobe Expander	Radial Inflow Expander	No Expander		
Cos Diffusion Lovers	Carbon Paper Macroporous Layer with	Carbon Paper Macroporous Layer with	Carbon Paper Macroporous Layer with		
Gas Diffusion Layers	Microporous layer applied on top	Microporous layer applied on top	Microporous layer applied on top		
Catalyst Application	Double-sided vertical die-slot coating of	Double-sided vertical die-slot coating of	Double-sided vertical die-slot coating of		
Catalyst Application	membrane	membrane	membrane		
Air Humidification	Water spray injection	Polyamide Membrane	None		
H ₂ Humidification	None	None	None		
Exhaust Water Recovery	SS Condenser (Liquid/Gas HX)	SS Condenser (Liquid/Gas HX)	None		
NATA Containment	Injection molded Viton MEA Frame around	Injection molded Viton MEA Frame around	Injection molded Viton MEA Frame around		
IVIEA Containment	Hot-Pressed MEA	Hot-Pressed MEA	Hot-Pressed MEA		
Coolant & End Gaskets	Screen Printed Resin	Screen Printed Resin	Screen Printed Resin		
Freeze Protection	Drain water at shutdown	Drain water at shutdown	Drain water at shutdown		
	2 for FC system	1 for FC system			
H ₂ Sensors	1 for passenger cabin (not in cost estimate)	1 for passenger cabin (not in cost estimate)	None		
	1 for fuel system (not in cost estimate)	1 for fuel system (not in cost estimate)			
End Plates/Compression	Composite molded end plates with	Composite molded end plates with	Composite molded end plates with		
System	compression bands	compression bands	compression bands		
Stack/System Conditioning	5 hours of power conditioning - from UTC's US	4 hours of power conditioning - from UTC's US	3 hours of power conditioning - from UTC's		
cally system conditioning	Patent #7,078,118	Patent #7,078,118	Patent #7,078,118		

Different Technology Schematics

Changes from 2008 to 2010:

- Higher temperature, smaller radiator
- Use of membrane humidifier (instead of water spray)
- Lower pressure
- Centrifugal compressor/expander (instead of twin lobe compressor)

Changes from 2010 to 2015:

- Higher temperature, smaller radiator
- No humidification
- Lower pressure
- Smaller compressor
- No expander

Platinum Cost

- Currently trading at ~\$1,235/tr.oz.
- Platinum cost is highly variable:
 - 3/04/08: \$2,280/tr.oz.

9/16/08: \$1,105/tr.oz. (almost back to our \$1,100 value!)

- Consistent use of \$1,100 facilitates "apples-to-apples" system costs comparison
- Especially for the current technology system, Pt is a major system cost component, so estimates are highly susceptible to Pt cost fluctuations

Noteworthy Changes Since Last Year

Curren	t Technology, 500,000 Systems/Year	Effect on System Cost						
ltem	Notes	(\$/kW _{net})						
Technology Level	Changed baseline to "2008"	-						
H₂ Sensors	Updated the Hydrogen sensor prices	(\$1.25)						
System Controllers	Switched from 2 controllers to 1	(\$2.50)						
Belly Pan	Added new DFMA analysis	(\$0.21)						
Power Density	Changed MEA Areal Power Density to 525 mW/cm ²	\$4.92						
Catalyst Loading	Changed Total Platinum-Group Catalyst Loading to 0.21 mg/cm ²	(\$12.36)						
Machine Lifetimes	Review and standardization of Machine Lifetimes	(\$0.05)						
Wiring	Added new analysis	\$0.03						
MEA Frame	Updated Material costs, improved calculations	\$1.80						
Membrane	Changed membrane thickness	(\$0.08)						
Humidifier	Improved Water Spray Humidifier cost estimate	(\$0.33)						
Bipolar Plates	Updated 316L and 304 sheet metal prices from Allegheny Ludlum	\$0.73						
Coolant & End Gaskets	Switched to Screen Printed Coolant & End Gaskets	(\$4.06)						
Startup Battery	Removed the Startup Battery from the analysis	(\$0.63)						
Low Temp. Radiator Loop	Reduced to 67% of cost to account for duties not included in analysis	(\$0.70)						
Miscellaneous	Numerous small changes	\$1.80						
Total System Cost (\$/kWnet)								

MEA Frame-Gasket Concept

Insertion molding of gasket around MEA

DuPont Viton[®] GF-S w/filler & curing additives

- \$36.87/kg (for 500k systems/year)
- 1.92 g/cc density

			Silicone				
		2007 Analysis	Updates	2008 Analysi			
		Silicono	Henkel	Viton CE S			
Material	rial		Loctite 5714	VITON GF-5			
Cost	\$/kg	\$14.33	\$56.70	\$36.87			
Density	g/cc	1.4	1.05	1.92			
Cure Time	S	150	~180	120			
Cure Temp		127 °C	-	187 °C			

Process:

- Vacuum mixer to remove air bubbles
- Low pressure injection followed by 20 ksi compression
- 2 min cycle time at 187°C
- Add'l room temperature cure outside of mold

MEA with Integrated Seal

Ballard Patent US 7,070,876 July 4, 2006

Coolant Gaskets

- 2007 Analysis used insertion molding for creation of coolant gaskets
- 2 new gasketing methods examined:
 - Laser Welding & Screen Printing
 - Both provide cost savings over Insertion Molding, especially with updated (higher) silicone/Viton costs
- Screen-printing selected

- Formula-A Resin (from Dana Corp. Patent) printed onto the stainless steel bipolar plates
- Indexed process, batch length ranges from 9.62 sec to 4 sec, depending on machine used
- \$387k process line used for 1,000 sys/year, faster \$1.4M process line used for other 4 rates
- UV Curing, robotic handling
- \$0.38/kW_{net} at 2008 technology, 500k sys/year
- Screen-printing process also applied to End Gaskets
 - \$0.04/kW_{net} savings compared to Insertion Molding

Hydrogen Sensors

- Makel Engineering sensors
- 2 sensors/system at 2008 tech.
- 1 per system for 2010 tech.
- 0 per system for 2015 tech.
- - \$850/sensor vs. \$2000/sensor in '07 Analysis
 - 1k systems/year, 2008 tech.
 - \$100/sensor vs. \$150/sensor in '07 Analysis
 - 500k systems/year 2008 tech.

			Curren	t Techn	ology			2010	Techno	logy			2015	Techno	logy	
	Annual Production Rate	1,000	30,000	80,000	130,000	500,000	1,000	30,000	80,000	130,000	500,000	1,000	30,000	80,000	130,000	500,000
	Sensors per System	2	2	2	2	2	1	1	1	1	1	0	0	0	0	C
08	Hydrogen Sensor Cost (\$)	\$850.00	\$438.00	\$320.00	\$261.00	\$100.00	\$750.00	\$367.00	\$256.00	\$201.00	\$50.00	\$500.00	\$238.00	\$161.00	\$124.00	\$20.00
20	Hydrogen Sensors Cost (\$/system)	\$1,700.00	\$876.00	\$640.00	\$522.00	\$200.00	\$750.00	\$367.00	\$256.00	\$201.00	\$50.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
	Hydrogen Sensors Cost (\$/kW _{net})	\$21.25	\$10.95	\$8.00	\$6.53	\$2.50	\$9.38	\$4.59	\$3.20	\$2.51	\$0.63	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
	Sensors per System	1	2	2	2	2	1	1	1	1	1	0	0	0	0	(

	Sensors per System	1	2	2	2	2	1	1	1	1	1	0	0	0	0	0
04	Hydrogen Sensor Cost (\$)	\$2,000.00	\$200.00	\$187.00	\$175.00	\$150.00	\$2,000.00	\$200.00	\$187.00	\$175.00	\$150.00	\$2,000.00	\$200.00	\$187.00	\$175.00	\$150.00
20	Hydrogen Sensors Cost (\$/system)	\$2,000.00	\$400.00	\$374.00	\$350.00	\$300.00	\$2,000.00	\$200.00	\$187.00	\$175.00	\$150.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
	Hydrogen Sensors Cost (\$/kW _{net})	\$25.00	\$5.00	\$4.68	\$4.38	\$3.75	\$25.00	\$2.50	\$2.34	\$2.19	\$1.88	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

Belly Pan

	•		Annual Production Rate	1,000	30,000	80,000	130,000	500,000
			Material (\$/system)	\$3.41	\$3.41	\$3.41	\$3.41	\$3.41
			Manufacturing (\$/system)	\$139.70	\$4.98	\$2.08	\$1.41	\$0.51
		80	Tooling (\$/system)	\$5.67	\$0.19	\$0.07	\$0.04	\$0.01
	sis	20	Total Cost (\$/system)	\$148.78	\$8.58	\$5.56	\$4.86	\$3.94
			Total Cost (\$/kW _{net})	\$1.86	\$0.11	\$0.07	\$0.06	\$0.05
			Material (\$/system)	\$3.41	\$3.41	\$3.41	\$3.41	\$3.41
	اچ	2010	Manufacturing (\$/system)	\$139.70	\$4.98	\$2.08	\$1.41	\$0.51
	2008 Ana		Tooling (\$/system)	\$5.67	\$0.19	\$0.07	\$0.04	\$0.01
			Total Cost (\$/system)	\$148.78	\$8.58	\$5.56	\$4.86	\$3.94
			Total Cost (\$/kW _{net})	\$1.86	\$0.11	\$0.07	\$0.06	\$0.05
			Material (\$/system)	\$3.41	\$3.41	\$3.41	\$3.41	\$3.41
			Manufacturing (\$/system)	\$139.70	\$4.98	\$2.08	\$1.41	\$0.51
		2015	Tooling (\$/system)	\$5.67	\$0.19	\$0.07	\$0.04	\$0.01
			Total Cost (\$/system)	\$148.78	\$8.58	\$5.56	\$4.86	\$3.94
			Total Cost (\$/kW _{net})	\$1.86	\$0.11	\$0.07	\$0.06	\$0.05
	S	0	Total Cost (\$/system)	\$400.12	\$41.12	\$17.58	\$12.18	\$5.75
	ysi	20	Total Cost (\$/kW _{net})	\$5.00	\$0.51	\$0.22	\$0.15	\$0.07
	nal	10	Total Cost (\$/system)	\$219.04	\$29.19	\$13.09	\$9.38	\$5.02
	Z A	20	Total Cost (\$/kW _{net})	\$2.74	\$0.36	\$0.16	\$0.12	\$0.06
	.00	15	Total Cost (\$/system)	\$219.66	\$29.27	\$13.12	\$9.40	\$5.02
		20	Total Cost (\$/kW _{net})	\$2.75	\$0.37	\$0.16	\$0.12	\$0.06

- New bottom-up DFMA analysis
- Vacuum thermoforming process
- Polypropylene, \$1.15/kg
- Manual Loading used at all mfg. rates except 500k/year
- **\$0.05/kW**_{net} (500k/year)

Wiring

New bottom-up analysis

page 17

- Detailed wiring requirements & BOM
- Vendor quotes on wires/connectors
- Analysis only covers materials costs (installation covered in system assembly)

- 22 data cables
- 17 power cables
- 38 meters of total length

\$2.65/kW_{net}

DIRECTED

TECHNOLOG

Balance of Plant

leads to largest savings.

page 18

- Air Compressors and Sensors are the two categories that have the largest \$ decline, together yielding 70% of the BOP cost decline from low production to high production.
- Technology changes yields lesser BOP savings and comes in form of reduced/eliminated components.
- Simplifications of Air, Humidifier, & Coolant Loops yield majority of technology improvement savings.

DIRECTED

TECHNOLOGI

Stack & System Costs vs. Annual Production Rate

Stack & System Costs vs. Annual Production Rate (ANL vs. DTI)

DTI:

- Power Density = 525 mW/cm²
- Catalyst Loading = 0.21 mg/cm²

"ANL":

- Power Density = 715 mW/cm²
- Catalyst Loading = 0.25 mg/cm²

		DTI	ANL		
		2008			
Stack Cost	\$/kW _{e (net)}	\$42	\$34		
System Cost	\$/kW _{e (net)}	\$81	\$73		

Stack Component Cost Distribution

Additional Analyses Not Included in 2008 Update Cost

- Bipolar Plate Coatings
 - Oak Ridge National Labs Nitriding
 - TreadStone proprietary process
- NSTF catalyst deposition (3M)

Nitrided Coatings for Stamped Bipolar Plates

- Oak Ridge National Lab (Mike Brady) is investigating nitrided coatings for bipolar plate corrosion resistance with low surface contact resistance
- Surface conversion, not a deposited coating: High temperature favors reaction of all exposed metal surfaces
 - No pin-hole defects (other issues to overcome)
 - Amenable to complex geometries (flow field grooves)
- Conventional nitriding currently conducted in large automated facilities: anticipated process for bipolar plates is similar but simpler & faster

Nitrided Coatings for Bipolar Plates (continued)

- Batch processing and automated "lights out" facilities analyzed
- Automated, step-continuous conventional nitriding system at 500,000 systems/year
 - Markup not included
 - Keys are short nitriding cycle and high furnace plate stacking density
- \$0.75/kW potentially feasible
- Nitriding by pulsed plasma arc lamp in range of \$0.16 0.44/kW
 - Feasibility to nitride Ti in "seconds" previously demonstrated

TreadStone Coatings for Stamped Bipolar Plates

- NDA signed with TreadStone, collaborated closely to model their multi-step process
- Based on US patent # 7,309,540 B2, and proprietary parameters
- Conducted preliminary evaluation based on information from TreadStone
- Conducted more in-depth version based on detailed equipment manufacturer specifications
 - Improved machinery schematics, capital costs, machine rates, etc.
- Analyzed the impact of switching from SS 316 to the cheaper SS 304 for coated plates
 - Cost savings of SS 304 is small
 - Further savings might be achieved with cheaper plate materials such as Aluminum

NanoStructured Thin Film Catalysts (NSTF) - 3M Method

(Preliminary Analysis)

Future Work

Year 3 (Option Year 1): Due February 2009

– Annual Update

- Expanded sensitivity analysis
 - Use results to drive the rest of the analysis
- Documentation & Reporting
 - Write the 2008 Report Update
 - Refine the spreadsheet model for submission
- Investigate platinum alloys & alternate catalyst deposition techniques, including NanoStructured Thin Film Catalysts

- Optional Task 3.3:

• Optimization analysis

- Analyze trade-offs between power density & catalyst loading for minimized cost
- CMEU cost study
 - Partner with Honeywell to determine a detailed CMEU cost
 - Seeking to find more detailed CMEU cost breakdown & new cost-saving pathways
 - Base analysis on existing Honeywell design
 - Honeywell will provide a detailed cost breakdown based largely on vendor quotes
 - DTI will develop a DFMA model around it

Additional Slides

The following slides are provided for further clarification

- Assumes 67% max equipment utilization consistent with 25%/year growth rate (over 5 years)
- Assumes 50%-80% membrane yields

- Membrane \$/m² is reduced solely by increases in manufacturing rate, not by technological advancement with year
- However, fewer m² are required in future years because areal power density increases

Catalyst Ink

Catalyst Preparation

• Batch Pt-precipitation onto Vulcan XC-72 carbon support via a hexachloroplatinic acid (CPA) precursor (notional E-TEK-like precipitation method)

Catalyst Ink composition

- 7% (wt) Nafion Ionomer
- 15% (wt) Carbon supported Pt (40% (wt) Pt on Vulcan XC-72)
- 78% (wt) Solvent (50/50 mixture of methanol and DI water)
- Mixed Ultrasonically
- Material costs are dominated by the platinum (\$1,100/tr. oz.)

Catalyst Application

Size L/W/H: 4.0 x 1.7 x 4.6 m Power Consumption: ~50 kW Weight: ~4000 kg Speed: 0.1 - 15 m/min Roll Width: 50 - 1000 mm Drying: Infrared 3 m - 6 m jet dryer

- Dual-sided Vertical coating process
 - Die-slot catalyst applicator
 - Modeled as Coatema VertiCoater
- Simultaneously applies catalyst slurry to both sides of the membrane
- Maximum roll width of 1 meter
- Line speed of 10m/min
- \$750,000 capital cost/line (not counting 40% for installation)

Bill of Materials: Stack (2008 Technology)

Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	90.34	90.34	90.34	90.34	90.34
Bipolar Plates (Stamped)	\$352.33	\$256.05	\$254.22	\$254.95	\$253.67
MEAs					
Membranes	\$3,276.06	\$556.89	\$352.06	\$278.52	\$151.80
Catalyst Ink & Application	\$974.90	\$764.47	\$760.17	\$757.96	\$747.94
GDLs	\$1,532.80	\$917.04	\$575.23	\$451.70	\$214.87
M & E Hot Pressing	\$38.30	\$17.11	\$17.11	\$16.87	\$16.86
M & E Cutting & Slitting	\$27.46	\$3.38	\$2.85	\$2.93	\$2.79
MEA Frame/Gaskets	\$196.31	\$240.25	\$232.80	\$232.26	\$226.35
Coolant Gaskets (Screen Printing)	\$102.52	\$14.98	\$16.37	\$16.70	\$15.21
End Gaskets (Screen Printing)	\$90.08	\$11.18	\$4.22	\$2.62	\$0.71
End Plates	\$68.43	\$33.64	\$29.66	\$27.81	\$20.92
Current Collectors	\$15.07	\$9.21	\$8.03	\$7.52	\$6.99
Compression Bands	\$10.00	\$8.00	\$6.00	\$5.50	\$5.00
Stack Assembly	\$51.59	\$19.73	\$17.10	\$17.46	\$17.03
Stack Conditioning	\$26.27	\$11.28	\$10.81	\$10.85	\$10.80
10% Cost Contingency	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Stack Cost	\$6,762.11	\$2,863.20	\$2,286.62	\$2,083.62	\$1,690.94
Total Cost for All Stacks	\$13,524.22	\$5,726.40	\$4,573.25	\$4,167.25	<mark>\$3,381.88</mark>
Total Stack Cost (\$/kW _{net})	\$169.05	\$71.58	\$57.17	\$52.09	\$42.27
Total Stack Cost (\$/kW _{gross})	\$149.71	\$63.39	\$50.62	\$46.13	\$37.44

• 3.5 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: Stack (2010 Technology)

Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	86.82	86.82	86.82	86.82	86.82
Bipolar Plates (Stamped)	\$243.36	\$153.47	\$153.47	\$152.56	\$152.53
MEAs					
Membranes	\$2,244.65	\$397.05	\$243.18	\$188.99	\$97.06
Catalyst Ink & Application	\$742.99	\$547.57	\$542.02	\$539.47	\$532.10
GDLs	\$878.18	\$456.99	\$286.57	\$224.10	\$106.44
M & E Hot Pressing	\$34.00	\$7.69	\$7.81	\$7.84	\$7.71
M & E Cutting & Slitting	\$27.32	\$3.26	\$2.74	\$2.62	\$2.53
MEA Frame/Gaskets	\$201.34	\$124.93	\$119.70	\$119.38	\$115.25
Coolant Gaskets (Screen Printing)	\$100.97	\$13.47	\$14.86	\$15.18	\$13.03
End Gaskets (Screen Printing)	\$90.06	\$11.16	\$4.20	\$2.60	\$0.70
End Plates	\$50.25	\$23.38	\$21.55	\$19.63	\$15.07
Current Collectors	\$10.58	\$5.29	\$4.56	\$4.27	\$3.96
Compression Bands	\$10.00	\$8.00	\$6.00	\$5.50	\$5.00
Stack Assembly	\$51.59	\$19.73	\$17.10	\$17.46	\$17.03
Stack Conditioning	\$24.76	\$9.15	\$8.84	\$8.77	\$8.65
10% Cost Contingency	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Stack Cost	\$4,710.06	\$1,781.13	\$1,432.61	\$1,308.37	\$1,077.06
Total Cost for All Stacks	\$9,420.13	\$3,562.26	\$2,865.22	\$2,616.73	\$2,154.13
Total Stack Cost (\$/kW _{net})	\$117.75	\$44.53	\$35.82	\$32.71	\$26.93
Total Stack Cost (\$/kW _{gross})	\$108.50	\$41.03	\$33.00	\$30.14	\$24.81

• 4.3 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: Stack (2015 Technology)

Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	87.11	87.11	87.11	87.11	87.11
Bipolar Plates (Stamped)	\$243.76	\$153.81	\$153.81	\$152.91	\$152.88
MEAs					
Membranes	\$2,249.97	\$398.84	\$244.28	\$189.85	\$97.51
Catalyst Ink & Application	\$550.26	\$368.18	\$364.00	\$361.79	\$356.88
GDLs	\$880.45	\$458.52	\$287.50	\$224.81	\$106.74
M & E Hot Pressing	\$34.00	\$7.68	\$7.81	\$7.84	\$7.71
M & E Cutting & Slitting	\$27.32	\$3.26	\$2.74	\$2.62	\$2.53
MEA Frame/Gaskets	\$201.87	\$125.32	\$118.58	\$118.49	\$115.64
Coolant Gaskets (Screen Printing)	\$100.98	\$13.48	\$14.87	\$15.19	\$13.03
End Gaskets (Screen Printing)	\$90.06	\$11.16	\$4.20	\$2.60	\$0.70
End Plates	\$50.28	\$23.39	\$21.56	\$19.63	\$15.07
Current Collectors	\$10.60	\$5.30	\$4.58	\$4.28	\$3.97
Compression Bands	\$10.00	\$8.00	\$6.00	\$5.50	\$5.00
Stack Assembly	\$51.59	\$19.73	\$17.10	\$17.46	\$17.03
Stack Conditioning	\$23.25	\$7.02	\$6.63	\$6.54	\$6.51
10% Cost Contingency	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Stack Cost	\$4,524.38	\$1,603.69	\$1,253.65	\$1,129.50	\$901.19
Total Cost for All Stacks	\$9,048.76	\$3,207.38	\$2,507.31	\$2,259.00	\$1,802.38
Total Stack Cost (\$/kW _{net})	\$113.11	\$40.09	\$31.34	\$28.24	\$22.53
Total Stack Cost (\$/kW _{gross})	\$103.88	\$36.82	\$28.78	\$25.93	\$20.69

• 4.9 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: Balance of Plant (2008 Technology)

Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	90.34	90.34	90.34	90.34	90.34
Mounting Frames	\$100.00	\$43.00	\$33.00	\$30.00	\$30.00
Air Loop	\$2,616.69	\$1,364.16	\$1,063.94	\$954.11	\$803.28
Humidifier & Water Recovery Loop	\$535.13	\$379.81	\$315.54	\$300.75	\$273.77
Coolant Loop (High Temperature)	\$528.75	\$448.00	\$384.25	\$363.10	\$331.80
Exhaust Loop (Low Temperature)	\$169.18	\$147.40	\$130.32	\$123.28	\$113.90
Fuel Loop	\$927.50	\$747.00	\$566.50	\$528.40	\$457.20
System Controller/Sensors	\$300.00	\$245.00	\$230.00	\$222.00	\$200.00
Hydrogen Sensors	\$1,700.00	\$876.00	\$640.00	\$522.00	\$200.00
Miscellaneous	\$962.30	\$706.05	\$586.98	\$563.07	\$515.73
Total BOP Cost	\$7,839.55	\$4,956.42	\$3,950.52	\$3,606.71	<mark>\$2,925.68</mark>
Total BOP Cost (\$/kW _{net})	\$97.99	\$61.96	\$49.38	\$45.08	\$36.57
Total BOP Cost (\$/kW _{gross})	\$86.78	\$54.87	\$43.73	\$39.92	\$32.39

• 2.6 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: Balance of Plant (2010 Technology)

Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	86.82	86.82	86.82	86.82	86.82
Mounting Frames	\$100.00	\$43.00	\$33.00	\$30.00	\$30.00
Air Loop	\$1,887.03	\$1,327.82	\$1,003.72	\$891.74	\$754.33
Humidifier & Water Recovery Loop	\$900.00	\$600.00	\$425.00	\$350.00	\$250.00
Coolant Loop (High Temperature)	\$498.24	\$420.54	\$358.32	\$338.69	\$308.92
Exhaust Loop (Low Temperature)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Fuel Loop	\$927.50	\$747.00	\$566.50	\$528.40	\$457.20
System Controller/Sensors	\$300.00	\$245.00	\$230.00	\$222.00	\$200.00
Hydrogen Sensors	\$750.00	\$367.00	\$256.00	\$201.00	\$50.00
Miscellaneous	\$910.12	\$653.87	\$534.80	\$510.89	\$463.55
Total BOP Cost	\$6,272.89	\$4,404.23	\$3,407.34	\$3,072.72	\$2,514.00
Total BOP Cost (\$/kW _{net})	\$78.41	\$55.05	\$42.59	\$38.41	\$31.42
Total BOP Cost (\$/kW _{gross})	\$72.25	\$50.73	\$39.25	\$35.39	\$28.96

• 2.6 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: Balance of Plant (2015 Technology)

Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	87.11	87.11	87.11	87.11	87.11
Mounting Frames	\$100.00	\$43.00	\$33.00	\$30.00	\$30.00
Air Loop	\$1,374.58	\$967.35	\$726.79	\$649.64	\$552.07
Humidifier & Water Recovery Loop	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Coolant Loop (High Temperature)	\$453.75	\$380.50	\$320.50	\$303.10	\$275.55
Exhaust Loop (Low Temperature)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Fuel Loop	\$927.50	\$747.00	\$566.50	\$528.40	\$457.20
System Controller/Sensors	\$300.00	\$245.00	\$230.00	\$222.00	\$200.00
Hydrogen Sensors	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Miscellaneous	\$895.23	\$638.98	\$519.91	\$496.00	\$448.66
Total BOP Cost	\$4,051.06	\$3,021.83	\$2,396.70	\$2,229.14	\$1,963.48
Total BOP Cost (\$/kW _{net})	\$50.64	\$37.77	\$29.96	\$27.86	\$24.54
Total BOP Cost (\$/kW _{gross})	\$46.51	\$34.69	\$27.51	\$25.59	\$22.54

• 2 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: System (2008 Technology)

Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	90.34	90.34	90.34	90.34	90.34
Fuel Cell Stacks	\$13,524.22	\$5,726.40	\$4,573.25	\$4,167.25	\$3,381.88
Balance of Plant	\$7,839.55	\$4,956.42	\$3,950.52	\$3,606.71	\$2,925.68
System Assembly & Testing	\$203.10	\$149.58	\$147.64	\$147.79	\$147.41
Total System Cost	\$21,566.86	\$10,832.40	<mark>\$8,671.42</mark>	\$7,921.75	<mark>\$6,454.97</mark>
Total System Cost (\$/kW _{net})	\$269.59	\$135.41	\$108.39	\$99.02	\$80.69
Total System Cost (\$/kW _{gross})	\$238.74	\$119.91	\$95.99	\$87.69	\$71.45

3 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: System (2010 Technology)

Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	86.82	86.82	86.82	86.82	86.82
Fuel Cell Stacks	\$9,420.13	\$3,562.26	\$2,865.22	\$2,616.73	\$2,154.13
Balance of Plant	\$6,272.89	\$4,404.23	\$3,407.34	\$3,072.72	\$2,514.00
System Assembly & Testing	\$202.89	\$149.41	\$147.48	\$147.63	\$147.25
Total System Cost	\$15,895.91	\$8,115.91	\$6,420.04	\$5,837.08	\$4,815.37
Total System Cost (\$/kW _{net})	\$198.70	\$101.45	\$80.25	\$72.96	\$60.19
Total System Cost (\$/kW _{gross})	\$183.10	\$93.48	\$73.95	\$67.23	\$55.47

• 3.3 to 1 cost reduction between low and high manufacturing rates

Bill of Materials: System (2015 Technology)

Annual Production Rate	1,000	30,000	80,000	130,000	500,000
System Net Electric Power (Output)	80	80	80	80	80
System Gross Electric Power (Output)	87.11	87.11	87.11	87.11	87.11
Fuel Cell Stacks	\$9,048.76	\$3,207.38	\$2,507.31	\$2,259.00	\$1,802.38
Balance of Plant	\$4,051.06	\$3,021.83	\$2,396.70	\$2,229.14	\$1,963.48
System Assembly & Testing	\$202.89	\$149.41	\$147.48	\$147.63	\$147.25
Total System Cost	\$13,302.71	\$6,378.62	\$5,051.49	\$4,635.76	\$3,913.10
Total System Cost (\$/kW _{net})	\$166.28	\$79.73	\$63.14	\$57.95	\$48.91
Total System Cost (\$/kW _{gross})	\$152.72	\$73.23	\$57.99	\$53.22	<mark>\$</mark> 44.92

• 3.2 to 1 cost reduction between low and high manufacturing rates

