Breakout Group 5: Solid Oxide Fuel Cells

PARTICIPANTS

Name	Organization		
Robert Ploessl	Corning, Inc.		
Tim Armstrong	Oak Ridge National Laboratory		
Barbara Heydorn	SRI International		
Suresh Baskaran	Pacific Northwest National Laboratory		
Michael Pambianchi	Corning Inc.		
Fatih Dogan	Missouri University of Science and Technology		
David Watkins	Los Alamos National Laboratory		
Charles Vesely	Cummins Power Generation		
Steven Sinsabaugh	Lockheed Martin		
Brian Borglum	Versa Power		
Robert Stokes	Versa Power		
Joel Doyon	FuelCell Energy, Inc.		
Serguei Lvov	Penn State University		
Joonho Koh	Materials & Systems Research, Inc.		
Rob Braun	Colorado School of Mines		
Bob Kee	Colorado School of Mines		
Doug Schmidt	Acumentrics, Corp.		
Jerry Martin	Protonex Technology, LLC		
Paul Matter	NexTech Materials, Ltd.		
Neal Sullivan	Colorado School of Mines		
Steve Shaffer	Delphi		
Joseph Pierre	Siemens Power Generation, LLC		
Anthony Dean	Colorado School of Mines		
Mark Williams	National Energy Technology Laboratory		
David Peterson (Facilitator)	U.S. Department of Energy/Golden Field Office		
Jesse Adams (Scribe)	U.S. Department of Energy/Golden Field Office		

Breakout Group 5: Solid Oxide Fuel Cells

Key Considerations/Points				
As part of the FY08 Omnibus Appropriations bill, EERE was instructed as follows: "Within available funds, the Department is directed to fund research on solid oxide fuel cells (SOFCs) for small-to-medium scale applications"				
Constraints considered throughout the breakout session: - Avoid duplicating efforts undertaken by DOE's Solid State Energy Conversion Alliance (SECA) Program. - Keep in mind EERE's mission/perspective - Maintain a focus on cost, efficiency, and manufacturability				
SOFCs can operate on a wide variety of fuels including: - Hydrocarbon fuels, which are commonly used today - Renewable fuels, as they continue to be introduced - Hydrogen, as a hydrogen economy begins to develop				

APPLICATIONS

• Primary Applications

•

٠

- Stationary Power

- o Less than 50 kW; do not restrict fuel choice
- o Combined heat and power applications maximize SOFC benefit of high grade waste heat
- o Critical and remote power are good early market applications
- o Biomass-fueled SOFCs are an area of interest
- Auxiliary Power Units (APUs) / Portable Generators
 - Less than 10 kW; operate primarily on liquid fuels
 - Long haul truck APUs are a particularly good application due to the large energy savings and market size
 - Recreation vehicle and marine APUs are an earlier, high visibility market with a customer potentially willing to pay a price premium
 - Emergency generators and other direct competition to current genset technology
 - Special issues include shock and vibration and start/stop (i.e., thermal) cycling
- Secondary Applications
 - Motive power for hybrid vehicles (SOFC/battery hybrid)
 - Portable power of less than 1 kW addressing the power size gap existing between batteries and engine-based generators

Breakout Group 5: Solid Oxide Fuel Cells

RD&D Needs

FUEL PROCESSING	SOFC MATERIALS	BALANCE OF PLANT COMPONENTS	FUELS FOR SOFCS
 Mainly focus on liquid fuel issues Fuel flexibility Internal reforming Fuel mixing/vaporization Polishing desulfurization (20 ppm down to 2 ppm) Reactor design tools 	 Lower temperature operation (600- 700oC) Resistance to thermal cycling and shock and vibration Redox tolerance Sulfur tolerant anode 	 Insulation Heat exchangers Sensors (e.g., fuel/air flow) 	 Biomass Synthesis gas with low levels of tar Direct utilization of carbon Bio-derived liquid fuels Alcohols Glycerin Fischer-Tropsch liquids