What performance would non-Pt cathode catalysts need to achieve to be practical for transportation?

or

The Importance of A/cm³

Frederick T. Wagner, Hubert A. Gasteiger and Susan Yan General Motors Fuel Cell Activities Honeoye Falls, NY

DOE Workshop on Non-Platinum Electrocatalysts

21-22 March, 2003

New Orleans, LA

Fuel Cell Activities

General Motors Irs

GMnonPtwkshp.ppt

1

Automotive stack performance / cost requirements

- Stack power density: ~1kW / liter
- Stack specific power: ~1 kW / kg
 - DOE 2010 targets (includes ancillaries): 0.55kW/L, 0.55kW/kg

But cost, and not just Pt cost, is the strongest driver toward small stacks (high current densities)

- DOE cost targets (FY2001 Progress Rpt., Table 4a)
 - electrodes <5/kW ==> \leq 0.2 g_{Pt}/ kW
 - 1E7 vehicles/yr doubles present Pt production
 - doable with 3-4 yr advance notice
 - C. Jaffray and G. Hards, in Handbook of Fuel Cells, V. 3, W. Vielstich, A. Lamm, and H.A. Gasteiger, eds., Wiley,2003, in press.
 - membrane: ≤\$5/kW, bipolar plate ≤\$10/kW

Fuel Cell Activities

General Motors Irs

Does/can Pt meet automotive requirements (including cost)?

A primer on current state-of-the art Pt activities and on losses in electrodes

Conclusions

H.A. Gasteiger and M.F. Mathias, Proceedings of the Proton Conducting Membrane Fuel Cells III Symposium, The Electrochemical Society, 2003, in press.

- ≤ 0.2 g Pt / kW can be achieved if we can
 - accept getting rated power at 600-650 mV (1.5A/cm² on air)
 - decrease present mass transport voltage losses by ~50%
 - achieve 2x increase in catalyst activity/unit Pt
 - demonstrate durability of Pt alloy catalysts known to be more active than Pt alone

Performance of State-of-the-Art MEAs

<u>Conditions:</u> $H_2/air(O_2)$ at

General Motors Irs

 \rightarrow origin of E_cell-losses?

Fuel Cell Activities

GMnonPtwkshp.ppt 4

Voltage Losses in State-of-the-Art MEAs - 1

^{*)} H.A. Gasteiger, W. Gu, R. Makharia, M.F. Mathias, and B. Sompalli, in: *Handbook of Fuel Cells: Fundamentals, Technology, and Applications, Vol. 3*, W. Vielstich, A. Lamm, and H.A. Gasteiger, Editors, Wiley, (to be published Spring 2003).

Fuel Cell Activities

General Motors Irs

Voltage Losses in State-of-the-Art MEAs - 2

Achievable Pt-Specific Power Densities (g_{Pt}/kW) automotive requirement: <0.2 g_{Pt}/kW (< 20g/vehicle)

current performance at 0.05/0.4 mg_{Pt}/cm² (for H_2/air)

50% reduced $\eta_{mass-tx}$ (MEA/DM design)

above + reduced Pt at 0.05/**0.2 mg_{Pt}/cm²** (-20 mV f. opt. MEA)

above + new catalyst w. doubled activity (tbd)

sautomotive targets require development of <u>x2 more active cathode catalyst</u>

 \rightarrow MEA/DM optimization required but less critical (feasibility demonstrated by UTC Fuel Cells (ECS abstracts, Fall 2002) **Fuel Cell Activities**

General Motors irs

Baseline Pt ORR activity: H₂/O₂ 80°C, 150 kPa, RH: 100%, 100%, stoichs 2/9.5, 0.05/0.4mg/cm², ~10µm catalyst layer Need twice this activity for automotive

Pt H₂∕O₂	A/cm ²	Turnover frequency (e ⁻ / site- s)	Site density (10 ²⁰ sites / cm ³)	TF*\$D (10 ²⁰ e ⁻ /cm ³ -s)	A/cm ³
Kinetic, @ 800mV _{IR} .	1.26	33	2.4	79	1260
tes, 45m ² _{Pt} /g _{Pt} H electro- sorption					
Raw data @800mV, 60m ² rt/grt XRD	0.55	11	3.1	34	550

Fuel Cell Activities

General Motors Irs

If the cathode catalyst were to cost nothing, how much could one afford to use? Based on DOE component cost targets

- DOE cost targets in \$/kW: electrodes 5, membrane 5, plates 10
 - if zero out electrode cost
 - could afford (20/15)x larger stack if other costs scaled with area
 - more realistic: could afford 1.5x larger stack
 - transport losses rule out electrode layer thicknesses greater than $100\mu m$ (10x thicker than present)
- Pt-free catalyst could therefore occupy up to 1.5 x 10 = 15x the volume of a state-of-the-art Pt/C catalyst.
- Need 2x the activity of the current catalyst
- So the costless catalyst must be within 8x of current Pt on activity (turnover frequency x sites/volume).
 - If costs/area (e.g. membrane) fell more than anticipated, volume considerations alone require activity within ~20x

An example: G. Faubert, R. Cote, J.P. Dodelet, M. Lefevre and P. Bertrand, Echim. Acta 44 (1999) 2589

@ 800 mV_{IRcorr}:

Fe/PTCDA => 0.038A/cm²

x 1e⁻/1.60E-19coul x 1/1.63E17 Fe

= 1.5 e⁻/(Fe atom - s)

Pt / C => 0.014 A/cm²

x 1e⁻/1.60E-19coul x 1/1.2E17 surf Pt

= 0.7 e⁻/(surface Pt atom - s)

To compare to reference conditions (150kPa, 80° C), assume 1st order in pO_2 (after subtracting P_{H2O} at cell temp.) and E_a = 6.6kcal/mole*:

TF (@ref) = TF x (103kPa/498kPa) x exp(6.6kcal/mole/R)(1/323 - 1/353)

= TF x 0.21 x 2.4 = 0.50 TF

50°C, 510kPa => 80°C, 150kPa would halve Pt activity

*Parthasarathy, Srinivasan, Appleby and Martin, JECS (1992) 2530

General Motors Irs

Comparison of Fe/PTCDA and Pt (Faubert et al. 1999), corrected to reference conditions, to automotive requirements

H ₂ /O ₂	Turnover frequency @800mV _{IR-} free (e ⁻ / site- s)	Site density (10 ²⁰ sites / cm ³)	TF*SD (10 ²⁰ e ⁻ /cm ³ -s)	A/cm ³ of supported catalyst
Fe/PTCDA (corrected to 80 C, 103kPa O ₂) est. 180 µm thick	0.8	Est. 0.09	Est. 0.06	1.1
2% Pt (from Faubert et.al.) (corrected to 80 C, 103kPa O ₂) est. 180 µm thick	0.4 (state-of-art is 33)*	Est. 0.07	Est. 0.04	0.4
Requirements High and from the more probable assumptions	1.6 to 4	3.1 or compensating higher TF	5 to12	60 to 160

*similarly suppressed Pt "reference" activities common in literature. e.g., Toda, Igarashi, Uchida and Watanabe, JECS 146 (1999)3750.

GMnonPtwł

Fuel C

How many Fe/PTCDA active sites should one be able to fit per cm³?

• o-phenanthroline the smallest molecule with 2 pyridinic N sites, considered to complex with Fe to form the most active site

•our catalysts: 0.4mg C /cm² gives 10 μ m layer

=> carbon density 0.4 g /cm³

•if polymerize and pyrolyze o-phenanthroline to same density, get 2.2E-3 moles/cm³

= 1.3E21 active sites (2N per active site)/cm³

•if Fe on each 2N, would be 23 weight % Fe, not 2000 ppm

Fuel Cell Activities

General Motors Irs

GMnonPtwkshp.ppt

With phenanthroline-like site density, activity of Fe/PTCDA could be...

	Turnover frequency @800mV _{IR-} free (e ⁻ / site- s)	Site density (10 ²⁰ sites / cm ³)	10 ²⁰ e ⁻ /cm ³ -s	A/cm ³ of supported catalyst
Fe/PTCDA (corrected to 80 C, 103kPa O ₂) est. 180 µm thick	0.8	Est. 0.09 <u>Could be 13</u>	Est 0.06 <u>Could be 10</u>	1.1 <u>Could be</u> 170
2% Pt (from Faubert et.al.) (corrected to 80 C, 103kPa O ₂) est. 180 µm thick	0.4 (state-of-art is 33)	Est. 0.07	Est 0.04	0.4
Requirements High end from the more probable assumptions	1.6 to 4	3.1 or compensating higher TF	5 to12	60 to 160

Figure 4. Tafel plots for the GDE polarization curves for selected carbons: (a) NT + FeAc 2K, (b) T + FeAc 2K.

F. Jaouen, S. Marcotte, J-P. Dodelet and G. Lindbergh, J. Phys. Chem. B 107 (2003) 1376.

 $H_2(310kPa)/O_2(510kPa)$ 80° C, humidifed @ 105° C, Nafion 117, 2.1mg catalyst/1cm² (~50µm)

Pt Turnover freq. 2x that in 1999 (corrected for conditions)

Fe/PTCDA Turnover freq. 1/30x that in 1999

Fuel Cell Activities

GMnonPtwkshp.ppt

General Motors Irs

Recommendations for cathode catalyst evaluation with automotive relevance

- Need a central laboratory to test novel electrocatalysts
 - avoid variation in reported baseline Pt activity
 - best done at a national lab
 - as milestone, samples (powder) should be sent to central lab for evaluation
- Run clean kinetic experiments (pure O₂, E_{iR-free} = 800mV)
 - $\leq 1 \mu m$ catalyst, with ionomer, on rotating disk electrode in $HClO_4$
 - Paulus, Schmidt, Gasteiger and Behm, J. Electroanal. Chem. 495 (2001) 134
 - − in MEA's (≤~10 μ m electrode layer thickness)
 - use 1 kHz impedance or current interrupt to correct for iR
 - wait at least 15 minutes at any given condition (i.e. current density) before acquiring data

General Motors irs

- 80°C, 150kPa suggested, for non-Pt compare to requirements shown on slide 11 (160 A/cm³)
- Determine Tafel slope to check extrapolation to potential with practical full-load current density (~650 mV)

Conclusions

- A Pt-based path to automotive performance and cost exists
 - requires durability from Pt-alloy catalysts and mass transfer improvements
- Non-Pt catalysts could help with cost and Pt supply if stringent
 A/cm³ kinetic requirement could be met
- Non-Pt example (Faubert et al.):
 - initial turnover frequency from '99 paper close to plausible
 - site density needs major increase, could be possible
 - durability (beyond ~24h) still to be established
- Only once durable kinetics are established, should one start to battle mass transfer through the thicker non-Pt catalyst layers to achieve practical A/cm²

Supplementary slides

Fuel Cell Activities

GMnonPtwkshp.ppt 17

DOE automotive stack cost targets (Table 4a, FY 2001 Progress Report)

- electrodes (anode and cathode together) \$5/kW
 - @\$20/g Pt (\$622/Tr. Oz.), allows 0.25g Pt/kW if rest of electrode were free
 - take ≤0.2g Pt/kW as representative, to allow for some other electrode costs
 - 0.2g Pt/kW (~15g/vehicle) considered workable for Pt production for 1E7/yr vehicles, with 3-4 year advance notice to increase Pt production
 - C. Jaffray and G. Hards, in Handbook of Fuel Cells, V. 3, W. Vielstich, A. Lamm, and H.A. Gasteiger, eds., Wiley,2003, in press.
- membranes \$5/kW
- bipolar plates (presumably also includes diffusion media) \$10/kW

Proper metric of absolute catalyst activity in O_2 : Turnover Frequency x (Site 3-D Density x Layer Thickness)

- Turnover frequency (TF) = e^{-} transferred per surface active atom per • second
- site density (SD) = active atoms per cm³ supported catalyst H electrosorption gives product = •
- active layer thickness (cm) ٠
- for uncorrected H_2/O_2 data @0.80 V (0.55A/cm²), 60 m_{Pt}^2/g_{Pt} from ٠ previous slides:

 $(0.55C/1s \text{ cm}^2) \times (1e^{-1.6E-19C}) \times (1cm^{2/4E-4g} p_t) \times (1g_{Pt}/60E4 \text{ cm}^2_{Pt}) \times (1cm^2_{Pt}/1.31E15)$ Pt atoms) = 11 e⁻ / surf Pt atom-s

 $(4E-4g_{Pt}/cm^2) \times (60E4cm_{Pt}^2/g_{Pt}) \times (1.31E15Pt atoms/cm_{Pt}^2) = 3.1E17 \text{ surf Pt}$ atoms,/cm² (10µm thick Pt-C catalyst layer) = 3.1E20 surf Pt atoms /cm³_{Pt-C}

for H_2/O_2 kinetic current @0.80 $V_{iR-free}$ (1.26A/cm² = 1260 A/cm³), • 45m²_{Pt}/g_{Pt} H electrosorption area

> (1.26C/1s cm²) x (1e⁻/1.6E-19C) x (1cm²/4E-4g _{Pt}) x (1g_{Pt}/45E4 cm²_{Pt}) x (1cm²_{Pt}/1.31E15 Pt atoms) = 33 e⁻ / surf Pt atom-s

> $(4E-4g_{Pt}/cm^2) \times (45E4cm^2_{Pt}/g_{Pt}) \times (1.31E15Pt atoms/cm^2_{Pt}) = 2.4E17$ ionicallyconnected surf Pt atoms,/cm² (10µm thick Pt-C catalyst layer) = 2.4E20 connected surf Pt atoms / cm³_{Pt-C}

Fuel Cell Activities

General Motors rs

sites/cm²

Absolute catalyst activity in air: Turnover Frequency x (Site 3-D Density x Layer Thickness) but kinetic data should be gathered in pure oxygen

- Turnover frequency (TF) = e^{-} transferred per surface active atom per second
- site density (SD) = active atoms per cm³ supported catalyst ۲ H electrosorption
- active layer thickness (cm)
- j sites/cm²_{geometric} for uncorrected H₂/air data @0.80 V (0.20A/cm²), 60 m²_{Pt}/g_{Pt} from ٠ previous slides:

```
(0.20C/1s \text{ cm}^2) \times (1e^{-1.6E-19C}) \times (1cm^{2/4E-4g}_{Pt}) \times (1g_{Pt}/60E4 \text{ cm}^2_{Pt}) \times (1cm^2_{Pt}/1.31E15)
Pt atoms) = 4.0 e<sup>-</sup> / surf Pt atom-s
```

 $(4E-4g_{Pt}/cm^2) \times (60E4cm^2_{Pt}/g_{Pt}) \times (1.31E15Pt atoms/cm^2_{Pt}) = 3.1E17 \text{ surf Pt}$ atoms,/cm² (10µm thick Pt-Ccatalyst layer) = 3.1E20 surf Pt atoms /cm³Pt-C

for H₂/air kinetic current @0.80 V_{iR-and mt-free} (0.50A/cm2), 45m²_{Pt}/g_{Pt} H electrosorption area = 500 A / cm3

```
(0.50C/1s cm<sup>2</sup>) x (1e<sup>-</sup>/1.6E-19C) x (1cm<sup>2</sup>/4E-4g <sub>Pt</sub>) x (1g<sub>Pt</sub>/45E4 cm<sup>2</sup><sub>Pt</sub>) x
(1cm<sup>2</sup><sub>Pt</sub>/1.31E15 Pt atoms) = 13 e<sup>-</sup> / surf Pt atom-s
```

 $(4E-4g_{Pt}/cm^2) \times (45E4cm^2_{Pt}/g_{Pt}) \times (1.31E15Pt atoms/cm^2_{Pt}) = 2.4E17$ ionicallyconnected surf Pt atoms./cm² (10µm thick Pt-C catalyst layer) = 2.4E20 connected surf Pt atoms / cm³_{Pt-C}

Fuel Cell Activities

gives product =

If the cathode catalyst were to cost nothing, how much could one afford to use? Based on DOE component cost targets

- If Pt = \$5/kW, membrane =\$5/kW, and bipolar plate =\$10/kW and all costs are proportional to active area, then zeroing out the Pt cost allows a 20/15x larger stack for the same cost. Bipolar plate should scale below linear with area, so say could afford a 1.5x larger-area stack -- still plausible on volume. (If BPP cost were independent of area, would be 2x)
- Current cathodes are about 10µm thick. Transport becomes more limiting with thicker electrodes; no one has ever exceeded 100µm for a successful fuel cell electrode. Take 10x as maximum layer thickness increase.
- Pt-free catalyst could therefore occupy up to 1.5 x 10 = 15x the *volume* of a state-of-the-art Pt/C catalyst.

So to give competitive cost (and acceptable stack size), the product of the turnover frequency and the active sites/volume for the costless catalyst must be no smaller than 15x less than that for the acceptable Pt solution, which in turn has 2x the activity/Pt of the current state of the art. So the costless catalyst must be within 8x of current Pt on activity (turnover frequency x sites/volume).

Sensitivity considerations

- 100µm catalyst layer might easily be too thick for good mass transfer, would require higher true activities
- If membrane costs dropped well below the \$5/kW level
 - stack volume (to achieve 1kW/L), rather than cost, would set the minimum costless catalyst activity, at roughly 20x lower activity (turnover frequency x site density) than current Pt
- If bipolar plate cost were essentially independent of area, minimum costless catalyst activity would be 10x lower than current Pt
- if the costless catalyst has a higher Tafel slope than the 70mV/decade for Pt at 80°C, its activity at 0.8V must be higher than noted here to give adequate full power density

Summary: Minimum target kinetic activity for the costless oxygen reduction catalyst

- 8x to20x lower than present Pt in a purely kinetic measurement
 - for H₂/O₂ at 150kPa, 80°C, fully humidified, IR-corrected 0.8 V vs. RHE:
 - = 60 to 160 A/cm³
 - the higher number arises from the more probable end of the range of assumptions

this number does not incorporate a measurement of utilization of the surface Pt (75% in baseline data), as does the TF below

- Turnover frequency for above conditions (assuming the same 2.4E20 ionically [and electronically]-connected active sites per cm³ as state-of-the-art Pt-C)
 - = 1.6 to 4 e⁻ / (active site second)
 - if active site volumetric density is lower than for Pt-C (likely), need proportionally higher turnover frequency

Recommendations for cathode catalyst evaluation with automotive relevance (cont'd)

- Experimental units to express results
 - A/cm³_{supported catalyst}
 - to be practical for transportation, want at least 60 to 160
 - (catalyst layer thickness used)
- Fundamental units to express results
 - Turnover frequency (e⁻/active site-second)
 - active site density (sites/ cm³_{supported catalyst})
 - should incorporate utilization measurement if available
 - product of the two above should exceed 5-12E20 e⁻/(cm³-s)
 - (catalyst layer thickness used)