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Automotive stack performance / cost

requirements

— Stack power density: ~1kW / liter
— Stack specific power: ~1 kW / kg

« DOE 2010 targets (includes ancillaries): 0.55kW/L,
0.55kW/kg

But cost, and not just Pt cost, is the strongest driver toward
small stacks (high current densities)

— DOE cost targets (FY2001 Progress Rpt., Table 4a)
« electrodes <$5/kW ==> <0.2 g,/ kW
— 1E7 vehicles/yr doubles present Pt production

« doable with 3-4 yr advance notice

C. Jaffray and G. Hards, in Handbook of Fuel Cells, V. 3, W. Vielstich, A.
Lamm, and H.A. Gasteiger, eds., Wiley,2003, in press.

« membrane: <$5/kW, bipolar plate <$10/kW
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Does/can Pt meet automotive
requirements (including cost)?

A primer on current state-of-the art Pt activities and on losses
in electrodes

« Conclusions

H.A. Gasteiger and M.F. Mathias, Proceedings of the Proton Conducting Membrane
Fuel Cells Ill Symposium, The Electrochemical Society, 2003, in press.

— <0.2g Pt/ kW can be achieved if we can
« accept getting rated power at 600-650 mV (1.5A/cm?on
air)
» decrease present mass transport voltage losses by
~50%
« achieve 2x increase in catalyst activity/unit Pt

— demonstrate durability of Pt alloy catalysts known to be
more active than Pt alone
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Conditions: H,/air(O,) at
s=2/2(9.5) at 150 kPa and
80°C (100/100%RH, 15

mins./pt.)

MEA: 50cm? active-area
0.4/0.4 mgp,/cm? (50%Pt/C)
=25um membrane (<1000
EW)

ance would be
identical with 0.06mg/cm? Pt on

14 ja/cm?

(i.e., N) losses at required power densities
-losses?
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Voltage Losses in State-of-the-Art MEAs - 1

g 1 0O Ha/O4(air) at s=2/2(9.5) and 150 kPa.y,
i . T.es=80C and 100% RH (12mins./pt.)
0.90 ki 1 mil low-EW membrane
_ iR-correction:
air . .
0.85 - on-line high-frequency
f0mVidecade | rogistance measuremts.
0.80 -
0.75 - H electrosorption area:
45m?/g Pt
0.70 - vty
kinetic | mass tx control Catalyst Pt area: 60m?/g
2 Pt utilization = 45/60 =
065 75%
0.60 bbbl e Mt
0. 0.1 1 i ..[Alem?

01
& 0,: =100% Kkinetic losses with pure O, (i,=1.7%103 A/cm?,)
& air: kinetically controlled only at <0.1 A/cm?

9 H.A. Gasteiger, W. Gu, R. Makharia, ML.F. Mathias, and B. Sompalli, in: Handbook of Fuel Cells: Fundamentals, Technology,
and Applications, Vol. 3, W. Vielstich, A. Lamm, and H.A. Gasteiger, Editors, Wiley, (to be published Spring 2003).
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Voltage Losses in State-of-the-Art MEAs - 2
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N major losses due to poor cathode kinetics (ORR)
% minor losses by ohmic resistance (50% Ry membranes 9070 Regniact)

Gy gains to be made by MEA/DM optimization (mass-tx)
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Achievable Pt-Specific Power Densities (g, /kW)

automotive requirement: <0.2 g,,/kW (< 20g/vehicle)
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(for H.,/air)

50cy0 reduced r]mass-tx
(MEA/DM design)

above + reduced Pt
at 0.05/0.2 mgp,/cm?
(-20 mV 1. opt. MEA)

above + new catalyst
w. doubled activity
(tbd)

L automotive targets require development of x2 more active cathode catalyst

— MEA/DM optimization required but less critical
(feasibility demonstrated by UTC Fuel Cells (ECS abstracts, Fall 2002)
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Baseline Pt ORR activity: H,/O,

80°C, 150 kPa, RH: 100%, 100%, stoichs 2/9.5,
0.05/0.4mg/cm?, ~10um catalyst layer
Need twice this activity for automotive

Pt Ajcm® Turmover |Site TF*SD Alecm®
frequency |density |({10%
H+/O» (e site- 8} | (10™sltes / | fom®-s)
cm?)
Kinetic, @ |1.
oy 1.26 33 24 79 1260
iy 9
45m°pdQpy
H slectro-
somtion
Raw data
Rawdam 1055 |11 (31 |34 550
60m’p/gey
XRD
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If the cathode catalyst were to cost nothing,
how much could one afford to use?

Based on DOE component cost targets

« DOE cost targets in $/kW: electrodes 5, membrane 5, plates 10
— if zero out electrode cost
» could afford (20/15)x larger stack if other costs scaled with area
* more realistic: could afford 1.5x larger stack

— transport losses rule out electrode layer thicknesses greater than
100um (10x thicker than present)

» Pt-free catalyst could therefore occupy up to 1.5 x 10 = 15x the volume
of a state-of-the-art Pt/C catalyst.

« Need 2x the activity of the current catalyst

« So the costless catalyst must be within 8x of current Pt on activity
(turnover frequency x sites/volume).

— If costs/area (e.g. membrane) fell more than anticipated, volume
considerations alone require activity within ~20x
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« s~ Anexample: G. Faubert, R. Cote, J.P. Dodelet, M.
o L-u?:‘im‘f"“"*;f - Lefevre and P. Bertrand, Echim. Acta 44 (1999) 2589

mr;;;w @ 800 rnVIRcorr:
Figwrs L. Beoguonstimia snﬂmﬂ:.f:ru_m . Fe/PTCDA => 0.038A/cm?
1.4 . , ‘ . , : , x 1e7/1.60E-19coul x 1/1.63E17 Fe
H.(310kPa)/O,(510kPa) 50°C, = 1.5 e'/(Fe atom - s)
humidifed @ 75° C, Nafion 117 ;
Q Pt/C =>0.014 A/cm?
S sl DAL x 1e71.60E-19coul x 1/1.2E17 surf Pt
@ 1\ Ar My MH an0°e cm® area,
& contains = 0.7 e /(surface Pt atom - s)
e 1.6E17 atoms ]
= \ ' Fe, most Fe To compare to reference conditions
g R (150kPa, 80° C), assume 1st order in
3 e ¢ coordination pO, (after subtracting P,;,o at cell
% - temp.) and E, = 6.6kcal/mole*:
53: 2 Wit P1, Erok ““"m% ‘ TF (@ref) = TF x (103kPa/498kPa) x
R 7.3 mg catalyst /1 cm? area, tains -
sl st e o atoms, 1.2E17 suli P ) exp(6.6kcal/mole/R)(1/323 - 1/353)
atoms [(assume 25% dispersion) \\ - TF X 021 X 24 - 050 TF
eI o 50°C, 510kPa => 80°C, 150kPa would halve Pt
o 3.2 D4 B 0.8 activity

2
Currert (A} (1em?) *Parthasarathy, Srinivasan, Appleby and

Martin, JECS (1992) 2520
ﬁ General Motors rg
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Comparison of Fe/PTCDA and Pt (Faubert et al. 1999),
corrected to reference conditions, to automotive

requirements

Turnover Shte density | TF*SD Alcm® of
frequency |[(10™sites/ |[(10™e~ |supported
H,/O,

@800mVir. |cm?) icm’g) |catalyst
froa
(ef site- )
Fe/PTCDA 0.8 Est. 0.09 Est. 0.08 |1.1
{comrected tc 80 C,
103kPa O
ast. 188 pm thick
2% Pt (from 0.4 Est. 0.07 Est. 0.04 |04

Faubert et al) |(state-of-art
{comrectedtc 80 C, | 33
103kPa O)

est. 184 pm thick

Requirements (1.6 o 4 3.1o0r S5to12 |60to 160
High end from the compensating

more probable higher TF

sssumpticns

*similarly suppressed Pt “reference” activities common in literature. e..g., Toda, Igarashi, Uchida and
Watanabe, JECS 146 (1999)3750.
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o-phenanthroline -
FW 180 gzgd How many Fe/PTCDA active

L Fe sites should one be able to fit
| "~ per cm3?

* o-phenanthroline the smallest molecule with 2 pyridinic N sites, considered to
complex with Fe to form the most active site

our catalysts: 0.4mg C /cm? gives 10um layer
=> carbon density 0.4 g /cm?

*if polymerize and pyrolyze o-phenanthroline to same density, get 2.2E-3
moles/cm?

= 1.3E21 active sites (2N per active site)/cm?
*if Fe on each 2N, would be 23 weight % Fe, not 2000 ppm
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With phenanthroline-like site density, activity of Fe/PTCDA could be...

Turnover Site denslty |10™%" Afcm®or
frequency |[(10™sltes! |/cm’s supported
@800MmVir. |cm catalyst
froa
(e site- s)
Fe/PTCDA 0.8 Est. 0.09 Est 0068 |1.1
{comrected ta 80 C,
Ef.k'l';l;.:ln thick Could be 13 Could be 10 Eﬁd be
2% Pt (from 0.4 Est. 0.07 Est 004 |04
Faubert et al.) | (state-of-art
{comrected o 88 C, is 33}
103kPa ©.)
ost. 18C um thick
Requirements |1.6 o 4 3.10r 5to12 &0 to 160
High end from the compensating
more probable higher TF
assumpticons
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Figure 4. Tafel plois for the GDE polarization curves for selected
carbons! {(a} NT + FeAc 2K, () T + FeAc 2K,
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F. Jaouen, S. Marcotte,
J-P. Dodelet and G.
Lindbergh, J. Phys.
Chem. B 107 (2003)
1376.

H,(310kPa)/O,(510kPa)
80° C, humidifed @
105° C, Nafion 117,
2.1mg catalyst/1cm?
(~50um)

Pt Turnover freq. 2x
that in 1999
(corrected for
conditions)

Fe/PTCDA
Turnover freq.
1/30x that in 1999
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Recommendations for cathode catalyst
evaluation with automotive relevance

* Need a central laboratory to test novel electrocatalysts
— avoid variation in reported baseline Pt activity
— best done at a national lab
— as milestone, samples (powder) should be sent to central lab for
evaluation
* Run clean kinetic experiments (pure O, E f,. = 800mV)
— <1pm catalyst, with ionomer, on rotating disk electrode in HCIO,
Paulus, Schmidt, Gasteiger and Behm, J. Electroanal. Chem. 495 (2001) 134

— in MEA'’s (<~10 um electrode layer thickness)
« use 1 kHz impedance or current interrupt to correct for iR

« wait at least 15 minutes at any given condition (i.e. current density)
before acquiring data

— 80°C, 150kPa suggested, for non-Pt compare to requirements
shown on slide 11 (160 A/cm3)

« Determine Tafel slope to check extrapolation to potential with
practical full-load current density (~650 mV)
Fuel Cell Activities B General Motors g
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Conclusions

« A Pt-based path to automotive performance and cost exists

— requires durability from Pt-alloy catalysts and mass transfer
improvements

« Non-Pt catalysts could help with cost and Pt supply if stringent
Al/cm? kinetic requirement could be met

* Non-Pt example (Faubert et al.):
— initial turnover frequency from ‘99 paper close to plausible
— site density needs major increase, could be possible
— durability (beyond ~24h) still to be established

« Only once durable kinetics are established, should one start to
battle mass transfer through the thicker non-Pt catalyst layers to
achieve practical Alcm?
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Supplementary slides
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DOE automotive stack cost targets
(Table 4a, FY 2001 Progress Report)

— electrodes (anode and cathode together) $5/kW

« @%20/g Pt ($622/Tr. Oz.), allows 0.25g Pt/kW if rest of
electrode were free

 take <0.2g Pt/kW as representative, to allow for some
other electrode costs

« 0.2g Pt/kW (~15g/vehicle) considered workable for Pt
production for 1E7/yr vehicles, with 3-4 year advance

notice to increase Pt production

— C. Jaffray and G. Hards, in Handbook of Fuel Cells, V. 3, W. Vielstich, A.
Lamm, and H.A. Gasteiger, eds., Wiley,2003, in press.

— membranes $5/kW

— bipolar plates (presumably also includes diffusion media)
$10/kW
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Proper metric of absolute catalyst activity in O,:
Turnover Frequency x (Site 3-D Density x Layer Thickness)

« Turnover frequency (TF) = e transferred per surface active atom per
second

» site density (SD) = active atoms per cm3 supported catalyst} H electrosorption

, ) gives product =
« active layer thickness (cm) sites/cm?

« for uncorrected H,/O, data @0.80 V (0.55A/cm?), 60 m?,/gp, from
previous slides:

(0.55C/1s cm?) x (1e/1.6E-19C) x (1cm?/4E-4g ;) x (1gp/60E4 cm?,,) x (1cm?,/1.31E15
Pt atoms) = 11 e- / surf Pt atom-s

(4E-4gp/cm?) x (60E4cm?,/g,,) X (1.31E15Pt atoms/cm?;,,) = 3.1E17 surf Pt
atoms,/cm? (10um thick Pt-C catalyst layer) = 3.1E20 surf Pt atoms /cm3;,

« for H,/O, kinetic current @0.80 Vg .. (1.26A/cm? = 1260 A/cm3),
45m?./gp, H electrosorption area

(1.26C/1s cm?) x (1e/1.6E-19C) x (1cm?/4E-4g ) x (19p/45E4 cm?,)) x (1cm?,/1.31E15
Pt atoms) = 33 e/ surf Pt atom-s

(4E-4gp/cm?) x (45E4cm2,/gp,) X (1.31E15Pt atoms/cm?,,) = 2.4E17 ionically(
connected surf Pt atoms,/cm? (10um thick Pt-C catalyst layer) = 2.4E20 connected
surf Pt atoms / cm3;,

geometroc
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Absolute catalyst activity 1n air: Turnover
Frequency x (Site 3-D Density x Layer Thickness)
but kinetic data should be gathered in pure oxygen

Turnover frequency (TF) = e- transferred per surface active atom per
second

site density (SD) = active atoms per cm3 supported catalyst }H electrosorption

active layer thickness (cm) gii:'eesslcpnrsduct =

for uncorrected H,/air data @0.80 V (0.20A/cm?), 60 m2,,/gp, from
previous slides:

(0.20C/1s cm?) x (1e/1.6E-19C) x (1cm?/4E-4g ;) x (19p/60E4 cm?,,) x (1cm?,/1.31E15
Pt atoms) = 4.0 e- / surf Pt atom-s

(4E-4gp/cm?) x (60E4cm?,/gp,) X (1.31E15Pt atoms/cm?,,,) = 3.1E17 surf Pt
atoms,/cm? (10um thick Pt-Ccatalyst layer) = 3.1E20 surf Pt atoms /cm3;,
for H,/air kiqetic current @0.80 Vg g mtfree (0-90A/cm2), 45m?,/gp, H
electrosorption area = 500 A/ cm3
(0.50C/1s cm?) x (1e/1.6E-19C) x (1cm?/4E-4g ,) X (19p/45E4 cm?,,)) X
(1cm?,/1.31E15 Pt atoms) = 13 e~/ surf Pt atom-s

(4E-4g./cm?) x (45E4cm?2,/g,,) X (1.31E15Pt atoms/cm?,,,) = 2.4E17 ionically(’
connected surf Pt atoms,/cm?2 (10um thick Pt-C catalyst layer) = 2.4E20 connected
surf Pt atoms / cm3;,,

geometric
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If the cathode catalyst were to cost nothing,
how much could one afford to use?

Based on DOE component cost targets

« If Pt = $5/kW, membrane =$5/kW, and bipolar plate =$10/kW and all
costs are proportional to active area, then zeroing out the Pt cost allows
a 20/15x larger stack for the same cost. Bipolar plate should scale
below linear with area, so say could afford a 1.5x larger-area stack --
still plausible on volume. (If BPP cost were independent of area, would be 2x)

» Current cathodes are about 10um thick. Transport becomes more
limiting with thicker electrodes; no one has ever exceeded 100um for a
successful fuel cell electrode. Take 10x as maximum layer thickness
increase.

» Pt-free catalyst could therefore occupy up to 1.5 x 10 = 15x the volume
of a state-of-the-art Pt/C catalyst.

So to give competitive cost (and acceptable stack size), the product of the
turnover frequency and the active sites/volume for the costless catalyst
must be no smaller than 15x less than that for the acceptable Pt
solution, which in turn has 2x the activity/Pt of the current state of the
art. So the costless catalyst must be within 8x of current Pt on

activity (turnover frequency x sites/volume).
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Sensitivity considerations

— 100um catalyst layer might easily be too thick for good mass
transfer, would require higher true activities

— If membrane costs dropped well below the $5/kW level

» stack volume (to achieve 1kW/L), rather than cost, would set the
minimum costless catalyst activity, at roughly 20x lower activity
(turnover frequency x site density) than current Pt

— If bipolar plate cost were essentially independent of area, minimum
costless catalyst activity would be 10x lower than current Pt

— if the costless catalyst has a higher Tafel slope than the
70mV/decade for Pt at 80°C, its activity at 0.8V must be higher than
noted here to give adequate full power density
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Summary: Minimum target kinetic activity for
the costless oxygen reduction catalyst

« 8x1t020x lower than present Pt in a purely kinetic measurement
— for H,/O, at 150kPa, 80°C, fully humidified, IR-corrected 0.8 V vs.
RHE:

= 60 to 160 A/cm?

 the higher number arises from the more probable end of the
range of assumptions

this number does not incorporate a measurement of utilization of
the surface Pt (75% in baseline data), as does the TF below

— Turnover frequency for above conditions (assuming the same
2.4E20 ionically [and electronically]-connected active sites per cm3
as state-of-the-art Pt-C)

= 1.6 to 4 e-/ (active site - second)
« if active site volumetric density is lower than for Pt-C (likely),
need proportionally higher turnover frequency
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Recommendations for cathode catalyst
evaluation with automotive relevance (cont’d)

* Experimental units to express results

- A Cmssupported catalyst
» to be practical for transportation, want at least 60 to 160

— (catalyst layer thickness used)

 Fundamental units to express results
— Turnover frequency (e’/active site-second)

— active site density (sites/ cm> ;o ed catalyst)
» should incorporate utilization measurement if available
« product of the two above should exceed 5-12E20 e*/(cm?3-s)

— (catalyst layer thickness used)
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