BREAKOUT GROUP 3: HIGH TEMP (SOFC) SYSTEM AND BOP PARTICIPANTS

NAME	ORGANIZATION
Dan Birmingham	
Stephanie Byham	Rolls-Royce U.S. Department of Energy/Sentech
Caine Finnerty	Protonex
Hussein Ghezel-Ayagh	
Fernando Garzon	FuelCell Energy Lawrence Berkeley National Laboratory
	EERC
Phillip Hutton Bob Kee	Colorado School of Mines
	DellaTech
Jerry Martin	
Jennifer Mawdsley Yeshwanth Navendar	Argonne National Laboratory Saint-Gobain
Dan Norrick	Cummins Power Generation
Nina Orlovskaya	University of California - Fresno
Michael Penev	National Renewable Energy Laboratory
Randy Petri Joe Pierre	Versa Power Systems
Frank Qi	Siemens Energy Saint Gobain
Katie Randolph Robert Remick	U.S. Department of Energy
Mark Richards	National Renewable Energy Laboratory VPS
Steven Shaffer	Delphi
Prabhakav Singh	University of Connecticut
Vincent Sprenkle	Pacific Northwest National Laboratory
Neil Sullivan	Colorado School of Mines
Ellen Sun	United Technologies Research Center
Scott Swartz	NexTech Materials
Eric Tang	Versa Power Systems
Thomas Trabold	RIT
Mike Tucker	Lawrence Berkeley National Laboratory
Michael Ulsh	National Renewable Energy Laboratory
Dimitrios Papageorgopoulos (Facilitator)	U.S. Department of Energy
Greg Kleen (Scribe)	U.S. Department of Energy

BREAKOUT GROUP 3: HIGH TEMP (SOFC) AND BOP KEY TECHNICAL BARRIERS

SEALS	DURABILITY/RELIABILITY/DEGRADATION	CONTAMINANTS
Seals for stacks tolerant to high thermal cycling	 A better understanding of degradation mechanisms within the stack and at the system component level The requirement for performance degradation to be <1%/10,000 hours for 'real-world' stationary applications The need for stack failure prevention during operational transients and system upsets Lack of accelerated durability testing protocols Thermal cycling issues Control system requirements to accommodate transients The need for low-cost and durable coatings The need for low-cost, high-temperature, low- creep alloys Carbon formation during load and temperature transients 	 Sulfur containing odorants in fuel Cathode tolerance to Cr and other impurities

BOP EFFICIENCY/COST	SENSORS/CONTROLS	SYSTEM INTEGRATION
 Cost and durability of high temperature blower (anode and cathode recycle and cathode cooling), heat exchanger Thermal management/integration The need for simplicity: eliminate and integrate functions Post reformer syngas clean up requirements 	 The need for affordable, reliable, high temperature sensors/controls (H₂S; Voltage; diagnostics) The need for affordable, long-life, non-pulsing liquid metering 	 The need for a technical validation program to assess cost and reliability under 'real life' conditions The need for low cost, high yield, at low volume manufacturing processes

BREAKOUT GROUP 3: HIGH TEMP (SOFC) AND BOP CRITICAL R&D NEEDS

SEALS	DURABILITY/RELIABILITY/DEGRADATION	MATERIALS	CONTAMINANTS	BOP EFFICIENCY/COST
 New stack seal designs that can withstand numerous thermal cycles 	 Fundamental understanding of materials degradation, from cell to stack Accelerated testing protocols for stacks and integrated systems Understanding of oxidation resistance/creep strength of alloys for >800°C Stack aging/durability test facility and program Generic integrated BOP degradation mechanisms and prediction 	 Materials/architecture development to support internal reforming of C₂⁺ hydrocarbons Validation of low cost coating and alumina forming alloy for hot section BOP components 	 Collaborate with odorant developers (N.G. & H₂) to eliminate sulfur Identification of non- coal contaminants and impact on performance - environmental air contaminants Reforming alternative liquid fuels 	 Develop low cost heat exchanger alloy and coatings Low temperature metal supported cell stack for rapid start-up and robustness to thermal cycling, minimizing Cr-poisoning issue, and improved durability Develop SOFC stack 'mule' for BOP subsystem component development and validation Improved cheaper more reliable power electronics

BREAKOUT GROUP 3: HIGH TEMP (SOFC) AND BOP CRITICAL R&D NEEDS (CONT'D)

SENSORS/CONTROLS	SYSTEM INTEGRATION	FUEL PROCESSORS
 Develop a low cost manufacturable temperature sensor for high temperature environments (500°C - 1100°C) Develop a low cost, manufacturable chemical or H₂S sensor that operates at high temperature (700°C) Individual cell performance measurements in stacks (sensors) Model - predictive process control - take advantage of sensors 	 200 kW – 1MW fuel cell system development for medium to large commercial/small industrial applications System demo at 10 to 1000kW to understand cost ,durability and performance in real life SOFCEL (250 kW - 1 MW) 	 Rugged, robust, high temperature fuel reforming catalysts Integrated fuel processor / heat exchanger for < 100 kW Develop multi fuel capability for SECA stacks High temperature CO₂ membrane to improve fuel processor durability (reduce coking)