U.S. Department of Energy

Overview of the DOE Hydrogen Program

DOE Fuel Cell Pre-Solicitation Workshop

January 23, 2008 • Golden, Colorado

JoAnn Milliken
Program Manager
U.S. Department of Energy Hydrogen Program

Challenges & Barriers

Technology Barriers

Hydrogen Cost

(target: \$2 - \$3/gge)

Hydrogen Storage Capacity & Cost

(targets: 2.7kWh/L, 3kWh/kg, and \$2/kWh)

Fuel Cell Cost and Durability

(targets: \$30 per kW, 5000-hour durability)

Technologies must be validated under real-world conditions.

Economic & Institutional Barriers

- Delivery Infrastructure
- Safety, Codes & Standards Development
- Public Awareness & Acceptance
- Domestic Manufacturing and Supplier Base

Hydrogen Fuel Initiative Budget

FY 2004 - FY 2008

	Funding (\$ in thousands)								
	FY 2004 Approp.	FY 2005 Approp.	FY 2006 Approp.	FY 2007 Approp.	FY 2008 Approp.	TOTAL (FY 04 – FY 08)			
HYDROGEN FUEL INITIATIVE									
EERE Hydrogen (HFCIT)	144,881	166,772	153,451	189,511	211,062	865,677			
Fossil Energy (FE)	4,879	16,518	21,036	22,997	24,773	90,203			
Nuclear Energy (NE)	6,201	8,682	24,057	18,855	9,909	67,704			
Science (SC)	0	29,183	32,500	36,388	36,388	134,459			
DOE Hydrogen TOTAL	155,961	221,155	231,044	267,751	282,132	1,158,043			
Department of Transportation	555	549	1,411	1,420	1,425	5,360			
Hydrogen Fuel Initiative TOTAL	156,516	221,704	232,455	269,171	283,557	1,163,403			

EERE Hydrogen Program Budget

FY 2004 - FY 2008

	Funding (\$ in thousands)						
Activity	FY 2004 Approp.	FY 2005 Approp.	FY 2006 Approp.	FY 2007 Approp.	FY 2008 Approp.		
Hydrogen Production & Delivery	10,083	13,303	8,391	33,702	39,636		
Hydrogen Storage R&D	13,628	22,418	26,040	33,728	43,501		
Fuel Cell Stack Component R&D	24,551	31,702	30,710	37,100	43,600		
Technology Validation	15,648	26,098	33,301	39,413	29,727		
Transportation Fuel Cell Systems	7,317	7,300	1,050	7,324	7,927		
Distributed Energy Fuel Cell Systems	7,249	6,753	939	7,257	7,630		
Fuel Processor R&D	14,442	9,469	637	3,952	2,973		
Safety, Codes & Standards	5,755	5,801	4,595	13,492	15,854		
Education	2,417	0	481	1,978	3,865		
Systems Analysis	1,429	3,157	4,787	9,637	11,395		
Manufacturing R&D	0	0	0	1,928	4,954		
Technical/Program Management Support	395	535	0	0	0		
Congressionally Directed Activities	41,967	40,236	42,520	0	0		
TOTAL	144,881	166,772	153,451	189,511	211,062		

Hydrogen Production & Delivery

GOAL: Diverse, domestic pathways to hydrogen production

KEY OBJECTIVE:

Reduce the cost to \$2.00 – \$3.00/gge (gallon gasoline equivalent) at the pump

Hydrogen Production — Cost Status

The Program has reduced the cost of producing hydrogen from multiple pathways

Cost of Hydrogen — Status & Targets

(in \$/gallon gasoline equivalent (gge), delivered, untaxed)

NEAR TERM: Distributed Production

- → Hydrogen is produced at station to enable low-cost delivery
 - Distributed Natural Gas
- ▲ Distributed Electrolysis
- Distributed Bio-Derived Renewable Liquids

LONGER TERM: Centralized Production

- → Large investment in delivery infrastructure needed
- Biomass Gasification
- Central Wind Electrolysis
- Coal Gasification with Sequestration
- Nuclear
- Solar High-Temperature Thermochemical Cycle

Hydrogen Production — Technology Progress

The capital cost of electrolyzers is being reduced

Progress is being made in biological production

The energy efficiency of electrolyzers is being improved

Hydrogen Storage — Status

GOAL: On board storage with > 300-mile driving range (while meeting all requirements for safety, cost, and performance)

The Program has identified materials with > 50% improvement in capacity since 2004

Hydrogen Storage — *Progress*

Storage materials must meet capacity and temperature requirements to effectively integrate with an automotive fuel cell system.

R&D will continue to focus on new materials and their operating characteristics.

Fuel Cell R&D

MAJOR RESEARCH AREAS:

Membranes

Catalysts & Supports

Water Transport

Characterization & Analysis

PRIMARY FOCUS

- Primary focus is on fuel cells for transportation applications
- R&D is focused on components rather than systems

KEY TARGETS:

- \$45/kW by 2010; \$30/kW by 2015
- 5,000-hour durability by 2015
- 60% efficiency

SECONDARY FOCUS

Stationary and other early-market fuel cells to establish the manufacturing base

KEY TARGETS:

- Distributed Power: \$750/kW and 40,000-hour durability (with 40% efficiency) by 2011
- APUs: Specific power of 100 W/kg and power density of 100 W/L by 2010
- Portable Power: Energy density of 1,000 W-h/L by 2010

Fuel Cells — Status & Progress

Fuel Cell System Cost

(80kW Direct H₂ automotive fuel cell)

Laboratory Stack Durability

(automotive fuel cell)

Fuel Cells for Transportation —

Status & Progress

Improvements in membrane durability

Reductions in Platinum Loading

Fuel Cells for Stationary & Portable Power —

Status & Progress

Improvements in efficiency and durability

FUEL CELLS for PORTABLE APPLICATIONS:

Improvements in energy density

Technology Validation:

Vehicles & Infrastructure

Technologies are validated & progress evaluated through learning demonstrations. (Four teams in 50/50 cost-shared projects, operating 77 fuel cell vehicles and 14 stations.)

DOE Vehicle/Infrastructure Demonstration

Verified fuel cell vehicle performance:

- **EFFICIENCY:** 53 58% (>2x higher than internal combustion gasoline engines)
- RANGE: 103 190 miles
- FUEL CELL SYSTEM DURABILITY: 1600 hours (~48,000 miles)

Demonstrated Fuel Cost: \$3/gge, from natural gas

DOT is demonstrating fuel cell buses and providing data to DOE for analysis

Eight buses in California, Massachusetts, New York, South Carolina, and Washington, DC

Technology Validation

Integrating Renewable Power & Hydrogen Production

Three Demonstration Projects

DTE Energy (ongoing)

Hydrogen production using water electrolysis with on-site solar energy (Southfield, Michigan).

Xcel/NREL Wind/Hydrogen Project (ongoing)

Integrates electrolyzers and wind turbines to understand the benefits and impacts of adding hydrogen production facilities to the electric power grid (NREL wind site at Golden, Colorado).

Hawaii (planned)

Hydrogen production using curtailed wind and geothermal energy to generate electricity and to fuel hydrogen buses at national parks.

Xcel-NREL Wind2H2 Project

Safety, Codes & Standards

CHALLENGES

- Lack of technical data to support codes & standards development; need for domestic and international consistency; delayed adoption of approved codes & standards
- Need to streamline and standardize the permitting process for hydrogen facilities
- Need to compile and disseminate hydrogen safety information

STRATEGY

SAFETY

- Facilitate the development of safe hydrogen systems by increasing understanding of hydrogen behavior and material compatibility
- Promote the safe use of hydrogen industry-wide, through safety education activities and the development of safety information tools

- Conduct research to enable codes and standards to be developed for hydrogen in all applications
- Facilitate the development and harmonization of domestic and international codes and standards

PROGRESS

- Developed Technical Reference for Hydrogen Compatibility of Materials
- Developed Web-based Hydrogen Safety Best Practices Manual (released for limited review)
- Developed the Hydrogen Fueling Station Permitting Compendium (due for release in 2Q of FY08)

Education

CHALLENGE: Lack of public awareness and understanding of H₂ and fuel cell technologies

STRATEGY

Educate target audiences about hydrogen and fuel cell technologies to facilitate near-term demonstration, commercialization, and long-term market acceptance.

FOCUS on near-term high-priority target audiences:

- · Safety and code officials
- Local communities
- State and local government officials
- · End-users/early adopters

(other audiences include schools and universities)

PROGRESS

- Developed "Introduction to Hydrogen Safety for First Responders" educational tool
- Launched "Increase Your H2IQ Public Information Program" (includes radio spots, podcasts, and book about hydrogen)
- Held pilot "Hydrogen 101" workshops for state and local governments in six states
- Launched middle school and high school curricula and teacher professional development programs

Market Transformation — From Early Markets to Fuel Cell Vehicles

Early markets in stationary, portable, and niche applications will lower cost and establish a supplier base—paving the way for fuel cell vehicles

Market Transformation

DOE is actively promoting commercialization of PEM fuel cell technologies by supporting early adoption, and by building partnerships with the public and private sectors

CHALLENGES

- Resistance to new technologies
- Lack of information on life-cycle costs
- Lack of user confidence related to reliability
- High capital cost

EARLY MARKET OPPORTUNITIES

Fuel Cells for Backup Power:

- Longer continuous run-time, greater durability than batteries
- Require less maintenance than batteries or generators
- Potential cost savings over batteries and generators

A1-kW fuel cell system has been providing power for this FAA radio tower near Chicago for more than three years.

> Photo courtesy of ReliOn

Fuel Cells for Material Handling Equipment:

Photo courtesy of Hydrogenics

- Allow for rapid refueling much faster than changing-out or recharging batteries
- Provide constant power without voltage drop
- Eliminate need for space for battery storage and chargers

Funding Opportunities — recent & upcoming

H₂ Storage

- **H**₂ Storage Engineering Center of Excellence (CoE): To address onboard systems engineering. Planned \$35 40M over 5 6 years for one team. Planned issuance: Jan. '08
- **H**₂ **Storage New Ideas:** Annual small solicitation to introduce new materials and concepts into portfolio. Planned \$3 6M over 2 5 years for 3 6 projects. Planned issuance: Jan. '08

Fuel Cells

- 2008 Solicitation/Lab Call:
 - Request for Information released in November 2007 (www.gpoaccess.gov/fr/index.html)
 - Fuel Cell Pre-Solicitation Workshop to be held in January 2008.
 - Ideas from the RFI and workshop will be taken into consideration for the solicitation/lab call to be released in April 2008

Manufacturing R&D

• Manufacturing R&D For Hydrogen & Fuel Cell Systems. Closed October 15, 2007. Focuses primarily on technologies that are near commercialization. Topics include: Alternative Electrode Deposition Processes; Gas Diffusion Layer Fabrication; Novel MEA Manufacturing; Process Modeling for Fuel Cell Stacks; Process and Device for Cost Effective Testing of Cell Stacks; and Manufacturing Technologies for High Pressure Composite Tanks

H₂ Education Development

■ Three topics, closed January 3, 2008: State and Local Government Outreach; Early Deployment and Education; and University Programs

SBIR/ STTR

- 2008 Solicitation included four hydrogen-related subtopics. Closed Nov. 2007
 - H₂ from Waste; Development of a Sulfur Dioxide Electrolyzer for the Hybrid Sulfur H₂
 Production Process; Bio-Fueled Solid Oxide Fuel Cell; Manufacturing of Bipolar Plates

Questions?

For more information visit: www.hydrogen.energy.gov

Hydrogen Posture Plan

An Integrated Research, Development and Demonstration Plan

Hydrogen Posture Plan

For more information on the Hydrogen Program www.hydrogen.energy.gov/roadmaps_vision.html

Learning Demonstration Interim Progress Report

For more information on the vehicle/infrastructure demonstration www.hydrogen.energy.gov/news_learning_demo.html

Hydrogen Overview Book

For more information on hydrogen and fuel cell technologies www1.eere.energy.gov/hydrogenandfuelcells/education/h2iq.html

