

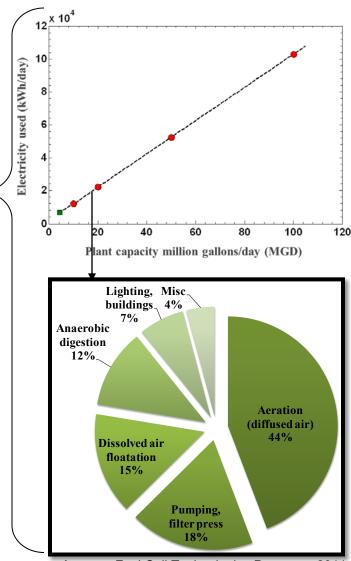
Biogas Impurities and Cleanup for Fuel Cells

Dennis Papadias and Shabbir Ahmed Argonne National Laboratory

Presented at the Biogas and Fuel Cells Workshop Golden, CO June 11-13, 2012

Biogas is the product of anaerobic decomposition of organic waste

Municipal solid wastes (MSW)


- For every 1 million tons of MSW:
 - 432,000 cubic feet per day of landfill gas (LFG) for a period of 20 years
 - 1 MW of electricity¹

Sewage sludge/waste water (WWTP or ADG)

- A typical WWTP processes 100 gallons per day (GD) for every person served
 - 1 cubic foot of digester gas can be produced per 100 gallons of wastewater
- 100 kW of electricity¹ can be generated from 4.5 MGD of waste water

Agricultural waste (i.e. dairy waste)

- About 70-100 ft³/day of digester gas is produced per milking cow
 - A dairy farm of 500 cows can generate 100 kW of electricity¹
- ¹ Assuming 30% conversion efficiency

Argonne Fuel Cell Technologies Program - 2011

There is a significant energy recovery potential from the biogas at the waste water treatment plants

WWTPs by Flow Rates (MGD)	Total WWTPs	Total wastewater flow (MGD)	Wastewater flow to WWTPs with ADG (MGD)	WWTPs with ADG utilizing biogas (%)	Power wasted ^{a)} (MW _{th})
>200	15	5,147	3,783	50	159
100 - 200	26	3,885	2,652	53	84
75 – 100	27	2,321	1,350	44	52
50 – 75	30	1,847	1,125	28	56
20 – 50	178	5,375	2,573	29	132
10 – 20	286	3,883	2,039	13	125
5 - 10	504	3,489	1,728	15	103
Total	1,066	25,945	15,247	19	711

www.epa.gov/chp/publications. "Opportunities for and Benefits of CHP at Wastewater Treatment Facilities," 2011, p.48

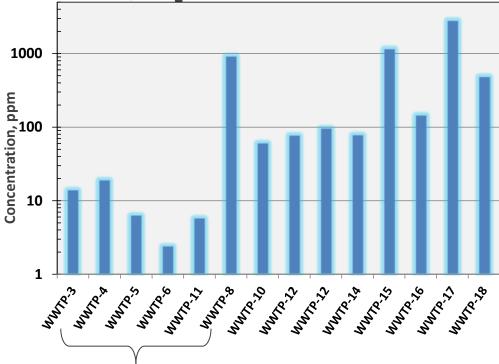
Impurities in biogas

Fuel Cell Tolerances

Biogas Clean-up

Cost of Clean-up

Argonne Fuel Cell Technologies Program - 2011

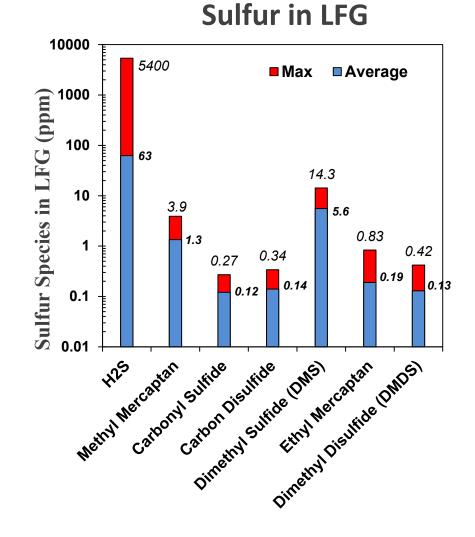


Biogas contains impurities that can damage the fuel cell system

- Large variability of trace impurities from different biogas source
 - Factors affecting concentration are i.e. temperature, pressure, type/origin of waste, age of waste (LFG)
 - Sulfur
 - Common to all biogas sources
 - LFG/ADG in ppm range
 - Highest levels in agricultural sector (up to vol-%)
 - H₂S bulk of sulfur species, organic sulfur range from ppb to few ppm (DMS>Mercaptans>COS)
 - Organosilicon
 - Biologically stable, found in many personal hygiene products, detergents, lubricants
 - Cyclic species (D3-D5), linear (L2-L4) and trimethylsilanol most frequently encountered
 - Newer sources of biogas (LFG, ADG) are showing higher concentrations
 - Analytical techniques are lab based and time consuming
 - Volatile Organic Compounds (VOC)
 - Aromatics, oxygenates, alkanes, halogens in the range of ppm
 - Distribution affected by the type of waste and age of the landfill
 - Halogens arise from volatilization of compounds in plastics foams, solvents, refrigerants,...
 - CFC's are stable compounds and evaporate slowly from landfill waste

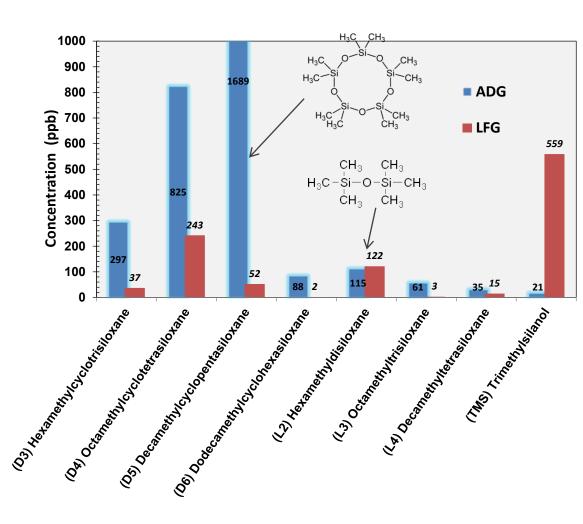
Sulfur - ADG contains mainly H₂S

- H₂S concentrations vary by 3 orders of magnitude
- DMS, Mercaptans can vary from ppb to few ppm
 - Other species at < 1 ppm
- Iron salts used in the water treatment process sequesters sulfide
- Impacts reformer, fuel cell catalyst, electrolyte
 - Sulfur impurities need to be reduced to levels of ~0.1-1 ppm

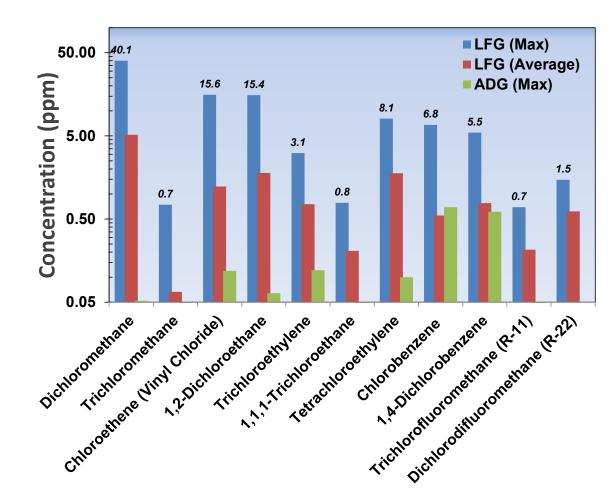

Average H₂S concentrations in ADG

Low H₂S content due to iron salt used in the waste water treatment process, i.e. for sludge thickening, phosphate precipitation

Argonne Fuel Cell Technologies Program - 2011


Sulfur - LFG contains different sulfur species in significant concentrations

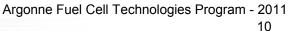
- LFG has a variety of organics sulfur species at higher concentrations (than in ADG)
 - H₂S content is lower
- Dimethyl Sulfide is the dominant organosulfur
- DMS is difficult to adsorb


Siloxane content in ADG is higher than in LFG

- Cyclic compounds (D4 & D5) are dominant in ADG
- Concentration of linear compounds and TMS are usually low
- ADG temperature affects speciation and concentration of siloxane compounds
- Solid silica deposits on surfaces. Tolerance level often require "below detection limit"

Landfill gas contains a variety of halocarbons and at much higher concentrations than in ADG

- Concentration of halogens are generally much lower in ADG than in LFG
- Chlorine is the dominant halogen species
- Forms corrosive gases from combustion or reforming
- Affects long-term performance of fuel cell



Impurities in biogas

Fuel Cell Tolerances

Biogas Clean-up

Cost of Clean-up

What are the tolerance limits for the FCs?

Sulfur

- Corrosive, affects catalyst and electrolyte
- Rapid initial followed by slower voltage decay
- More severe effect with CH₄/CO rich fuels to Fuel Cell and anode recirculation
- Tolerance limits 0.5-5 ppm
- Effect may be recoverable

Siloxanes

- Fouls surfaces (HEx, sensors, catalysts)
- Thermally decompose forming glassy layers
- Few studies on the effects on FC's, but tolerance limits may be practically zero

Halogens

- Corrosive, affects electrolyte
- Long term degradation effect
- Tolerance limits, 0.1-1 ppm

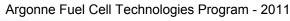
Impurity	Toleranc	e	Reference	
Molten Carbonate Fuel Cells				
H ₂ S	0.1 0.5 0.1-5	ppm	(Tomasi, et al., 2006) (Abe, Chaytors, Clark, Marshall and Morgan, 2002) (Moreno, et al., 2008) (Desiduri, 2003)	
COS, CS ₂ , mercaptan 1		ppm	(Tomasi, Baratieri, Bosio, Arato and Baggio, 2006)	
Organic Sulfur	<6	ppm	(Lampe, 2006)	
H ₂ S, COS, CS ₂	0.5-1 <10	ppm	(Cigolotti, 2009) (Lampe, 2006)	
Halogens (HCl)	0.1-1	ppm	(Moreno, McPhail and Bove, 2008) (Desiduri, 2003), Lampe, 2006) (Abe, Chaytors, Clark, Marshall and Morgan, 2002)	
Halides: HCl, HF	0.1-1	ppm	(Cigolotti, 2009)	
Alkali Metals	1-10	ppm	(Tomasi, Baratieri, Bosio, Arato and Baggio, 2006) (Moreno, McPhail and Bove, 2008)	
NH3	1	%	(Moreno, McPhail and Bove, 2008) [Desiduri, 2002], [Fuel Cell Handbook, 2002] (Cigolotti, 2009)	
			(Moreno, McPhail and Bove 2008)	

Siloxanes: HDMS, D5	10-100 <1	ppm	(Lampe, 2006)	
Tars	2000	ppm	(Cigolotti, 2009)	
Heavy Metals: As, Pb, Zn, Cd, Hg	1-20	ppm	(Cigolotti, 2009)	
Solid Oxide Fuel Cells				

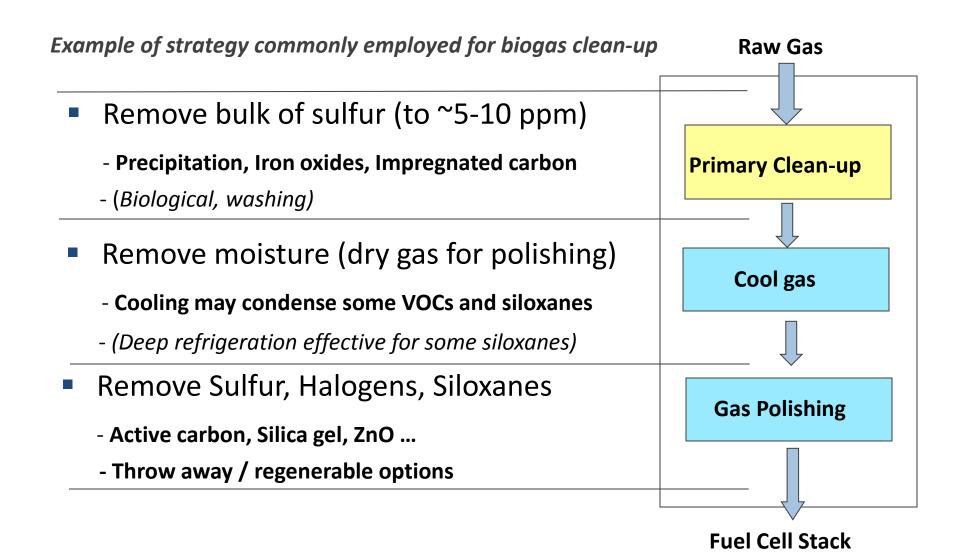
Some tolerance data is available

Type of Fuel Cell	PAFC	MCFC	SOFC	
H ₂ S	2	0.1-5.0	1	Units: ppm
COS, CS ₂ , Mercaptan		1		
Organic Sulfur		6		
H ₂ S, COS, CS ₂		0.5-10		
HCl, ppm		0.1	"few"	
Halogens	4	0.1-1.0	1-5	
Halogenated Organics		0.1		
NH ₃	1	10,000	5000	
Siloxanes		1	0.01	
Tars		2000		_

The data and its variability reflects the vulnerability of the materials and the conditions at which they were tested

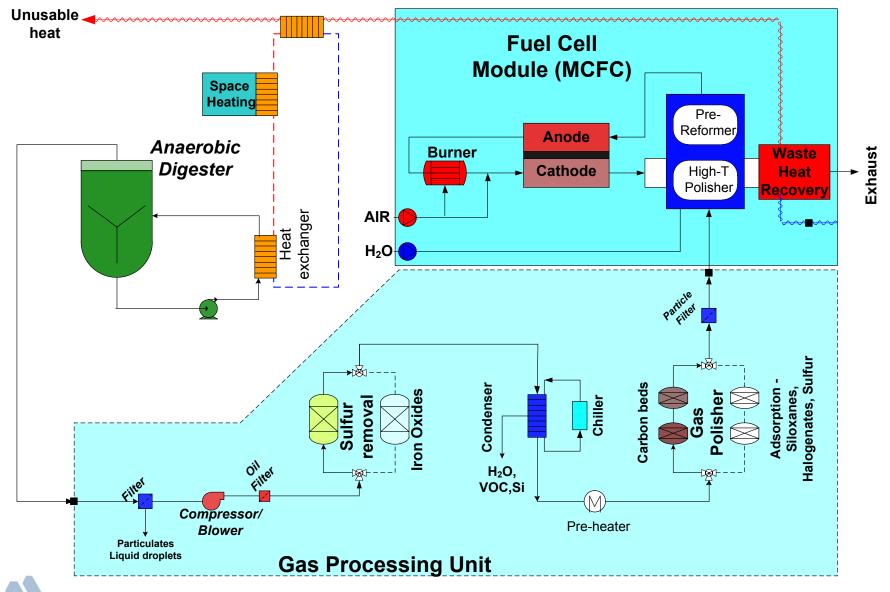


Impurities in biogas

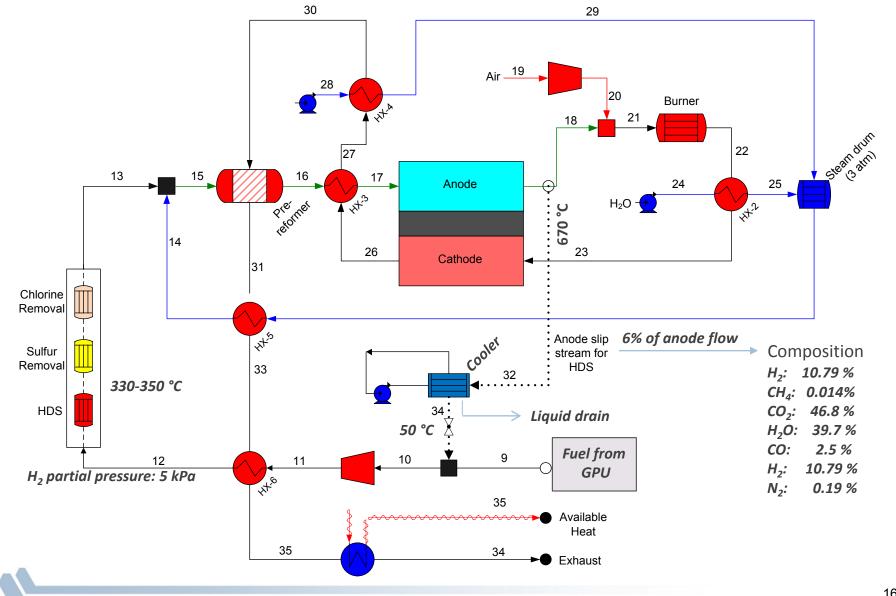

Fuel Cell Tolerances

Biogas Clean-up

Cost of Clean-up



Clean up processes mostly rely on bulk removal and polishing solutions



14

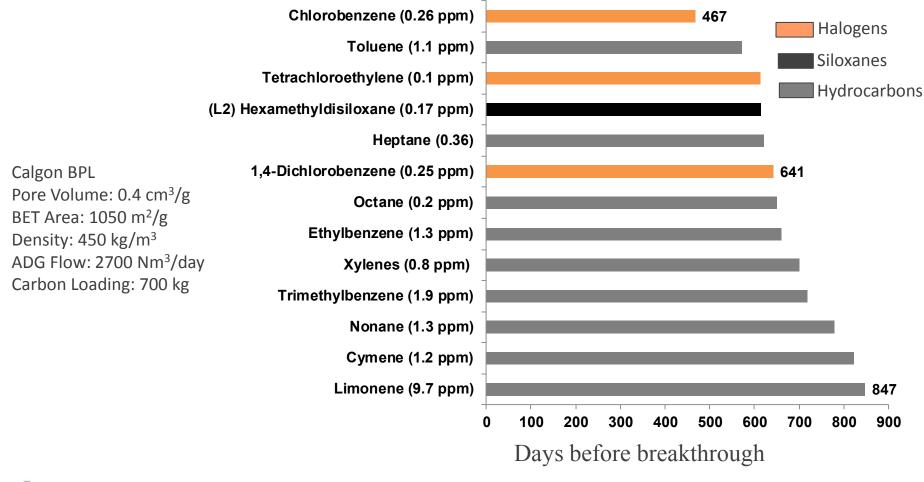
The base case system operates on Anaerbic Digester Gas coupled with a 300 kWe MCFC

The process includes a high temperature gas polisher: Part of the anode tail-gas (6% or less) need to be recycled for the HDS unit

The adsorption capacity of activated carbon varies dramatically with the impurity species, and further by their interactions

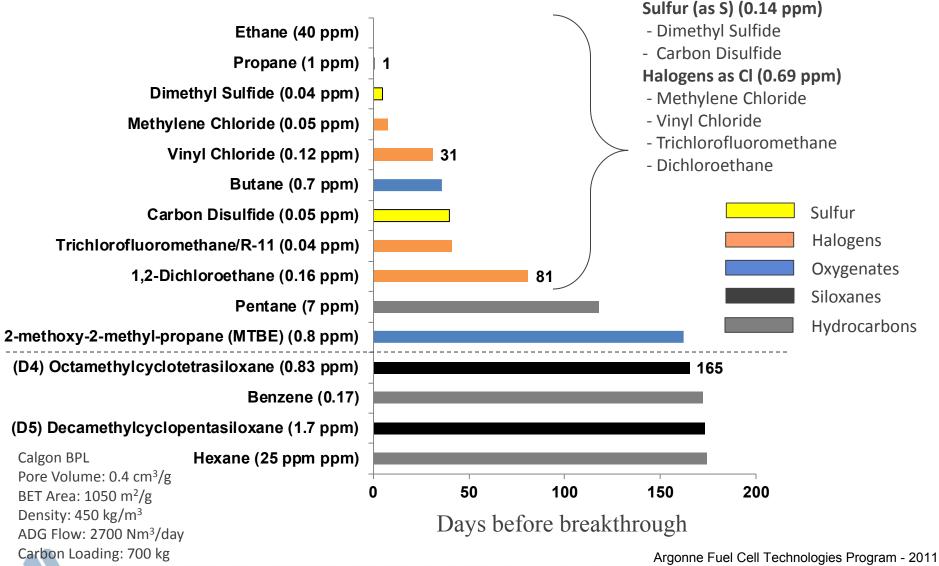
Strong	Species	Capacity ^{a)} (Nm³/g)	Capacity Wt.%	Boiling Point °C
C C	Xylene	4.9	21.8	144
Adsorption affinity	Toluene	4.6	17.2	110
	Tetrachloroethylene	3.4	23.8	121
	Hexane	2.8	9.7	68
	D4 (Octamethylcyclotetrasiloxane)	2.3	26	173
	Trichloroethylene	2.2	12.2	360
	Acetone	0.7	1.7	87
	Vinyl Chloride	0.5	1.3	-13
	Dichloromethane	0.1	0.5	39
	Hydrogen Sulfide ^{b)}	~0	~0	-60
	Ethane	~0	~0	-89

Maximum capacity for the individual species

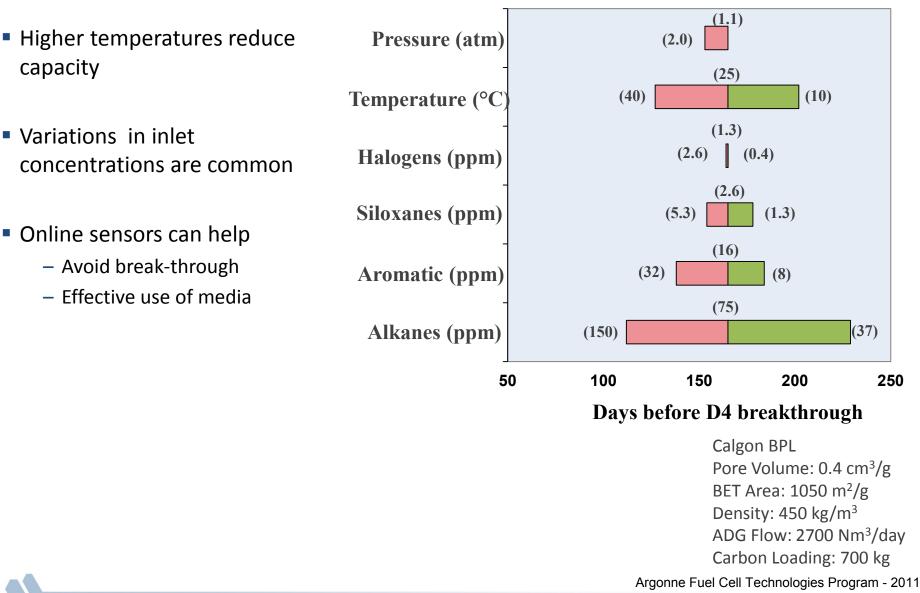

Weak

^{a)} Biogas processed to remove 10 ppm of impurities per g-carbon, T=298 K, 0% humidity

^{b)} Capacity for non-impregnated carbon


Adsorption affinity

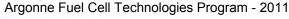
The hydrocarbons are effectively removed by activated carbon



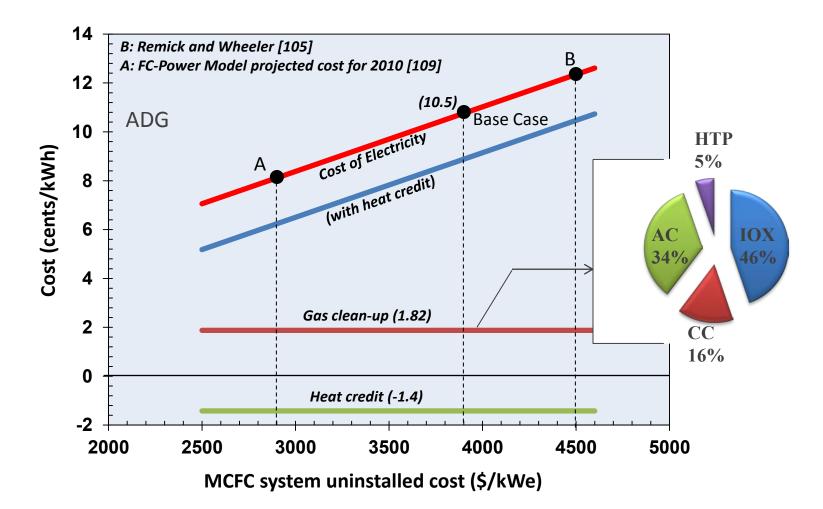
Argonne Fuel Cell Technologies Program - 2011

The carbon beds were replaced before D4 and D5 siloxanes break through

The hydrocarbons reduce the capacity of the carbon

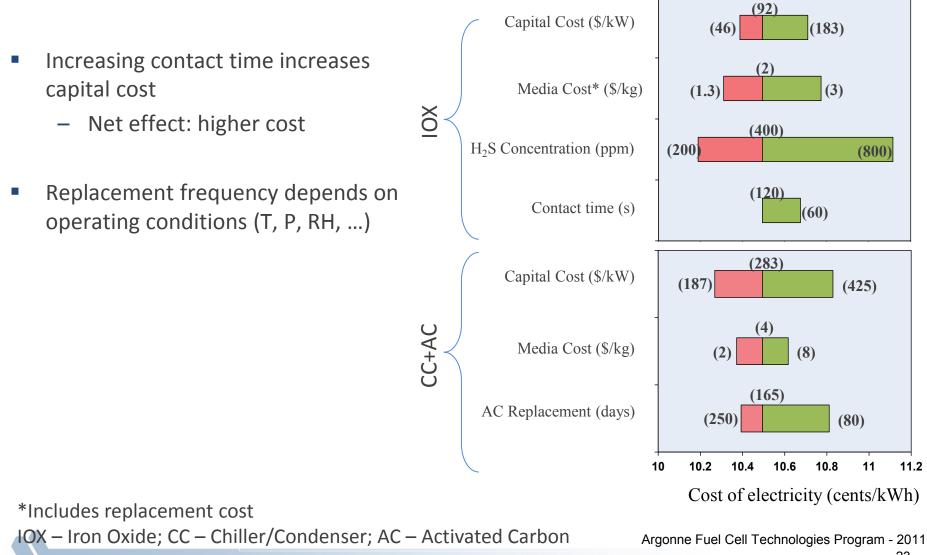


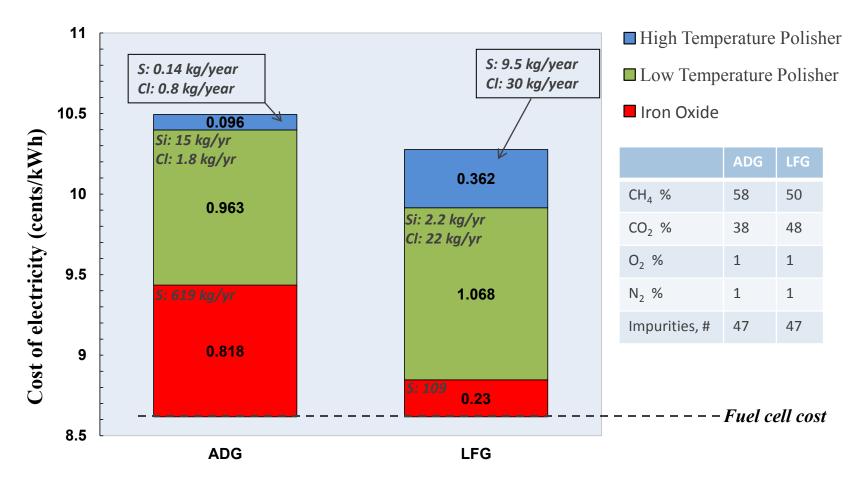
Impurities in biogas


Fuel Cell Tolerances

Biogas Clean-up

Cost of Clean-up


Gas clean-up adds ~2 cents per kWh, which can be partly offset if credited for available heat


AC = Activated Carbon, CC = Chiller / Condenser, IOX = Iron Oxide, HTP = High Temperature Polisher

Argonne Fuel Cell Technologies Program - 2011

The cost of electricity is most sensitive to the H₂S content

H₂S removal dominates cost of ADG clean-up The carbon bed is the most expensive part of LFG clean-up

If NG costs \$4/MMBtu, then the cost of electricity from NG-MCFC would be ~11 c/kWh

Argonne Fuel Cell Technologies Program - 2011

Custom clean-up solutions are complex and costly

- Sulfur, organosilicon, and halocarbons need to be removed to ensure durability of the fuel cell
 - Moisture, most hydrocarbons, do not damage the fuel cell but degrade the capacity of the media
- Fuel cells have little (if any) tolerance for these impurities
- There are technology options for removing the impurities
 - Clean-up process needs to be designed based on impurity distributions
 - Increased complexity of the system due to impurity interactions with sorbents
- Clean-up costs represent ~20% of the cost of electricity
- Technology needs
 - Sensors
 - Sorbents
 - Adsorption data to support calculations
 - Higher capacity
 - Generic clean-up strategies

Acknowledgment

- Fuel Cell Technologies Program, Energy Efficiency and Renewable Energy, U.S.
 Department of Energy
- Fuel Cell Energy
- Versa Power Systems
- Acumentrics