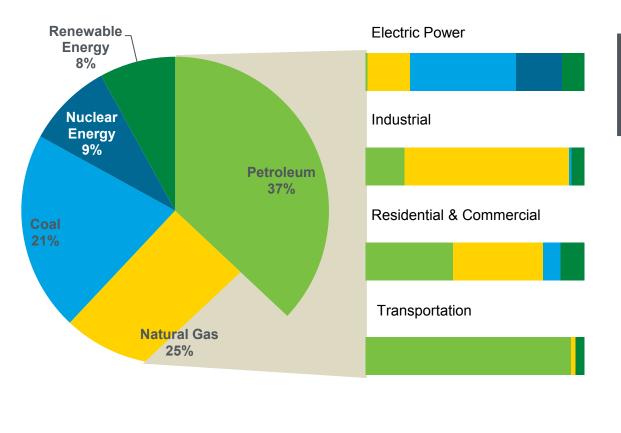
Expanding the Use of Biogas with Fuel Cell Technologies

Energy Efficiency & Renewable Energy

Biogas with Fuel Cells Workshop National Renewable Energy Laboratory Golden, Colorado

6/11/2012

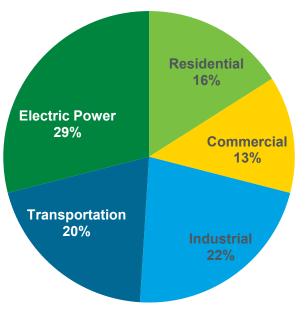

Sunita Satyapal

U.S. Department of Energy Fuel Cell Technologies Program Program Manager

U.S. Energy Consumption

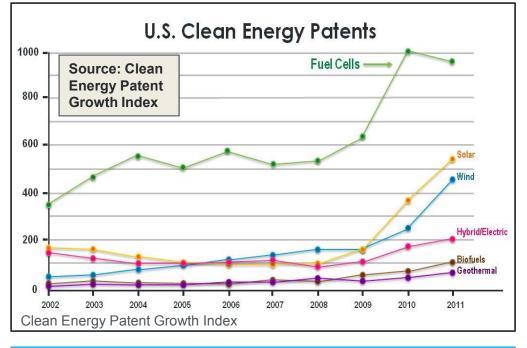
ENERGY Energy Efficiency & Renewable Energy

U.S. Primary Energy Consumption by Source and Sector

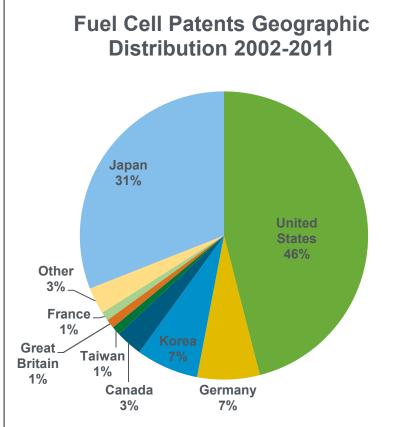


Total U.S. Energy = 98 Quadrillion Btu/yr

Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3


Fuel Cells can apply to diverse sectors

Share of Energy Consumed by Major Sectors of the Economy, 2010

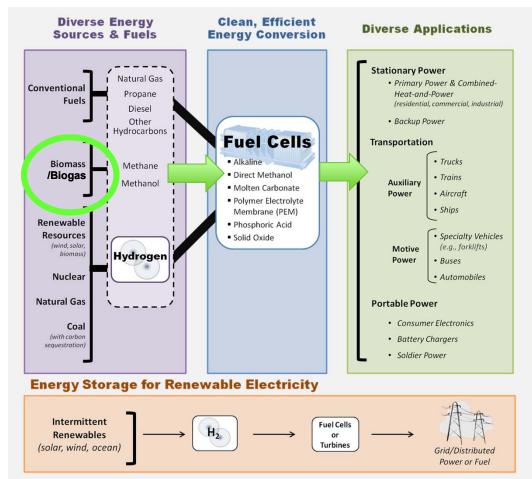


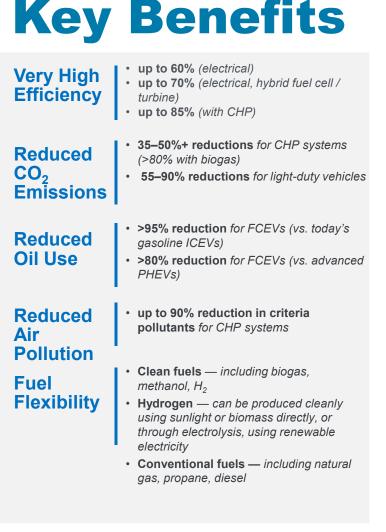
Fuel Cells – An Emerging Global Industry

ENERGY Energy Efficiency & Renewable Energy

Top 10 companies: GM, Honda, Samsung, Toyota, UTC Power, Nissan, Ballard, Plug Power, Panasonic, Delphi Technologies

Clean Energy Patent Growth Index^[1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011.


• Nearly double the second place holder, solar, which has ~540 patents.


[1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf

Fuel Cells: Benefits & Market Potential

ENERGY Energy Efficiency & Renewable Energy

The Role of Fuel Cells

Worldwide Commitment to H2 and Fuel Cells

U.S. DEPARTMENT OF ENERGY R

Energy Efficiency & Renewable Energy

The world's leading automakers have committed to develop FCEVs. Germany and Japan have announced plans to expand the hydrogen infrastructure.

Мајс		Nanufacturers' Activities and Plans for FCEVs
	Toyota	 2010-2013: U.S. demo fleet of 100 vehicles 2015: Target for large-scale commercialization "FCHV-adv" can achieve 431-mile range and 68 mpgge
	Honda	 Clarity FCX named "World Green Car of the Year"; EPA certified 72mpgge; leasing up to 200 vehicles 2015: Target for large-scale commercialization
DAIMLER	Daimler	 Small-series production of FCEVs began in 2009 Plans for tens of thousands of FCEVs per year in 2015 – 2017 and hundreds of thousands a few years after In partnership with Linde to develop fueling stations. <i>Recently moved up commercialization plans to 2014</i>
GM	General Motors	 115 vehicles in demonstration fleet 2012: Technology readiness goal for FC powertrain 2015: Target for commercialization
B	Hyundai- Kia	 2012-2013: 2000 FCEVs/year 2015: 10,000 FCEVs/year "Borrego" FCEV has achieved >340-mile range.
	Volkswagen	Expanded demo fleet to 24 FCEVs in CARecently reconfirmed commitment to FCEVs
	SAIC (China)	• Partnering with GM to build 10 fuel cell vehicles in 2010
Ford	Ford	• Alan Mulally, CEO, sees 2015 as the date that fuel cell cars will go on sale.
Ö	BMW	 BMW and GM plan to collaborate on the development of fuel cell technology

H₂Mobility - evaluate the commercialization of H₂ infrastructure and FCEVs

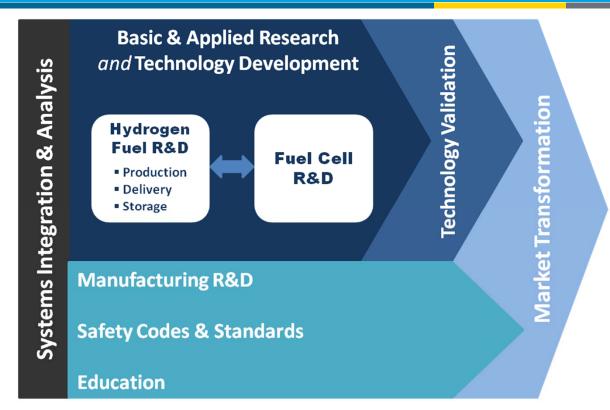
Public-private partnership between NOW and industry stakeholders including: Daimler, Linde, OMV, Shell, Total, Vattenfall, EnBW, Air Liquide, Air Products


UKH₂Mobility will evaluate anticipated FCEV roll-out in 2014/2015

13 industry partners including: Air Liquide, Air Products, Daimler, Hyundai, ITM Power, Johnson Matthew, Nissan, Scottish & Southern Energy, Tata Motors, The BOC Group, Toyota, Vauxhall Motors

13 companies and Ministry of Transport announce plan to commercialize FCEVs by 2015

• 100 refueling stations in 4 metropolitan areas and connecting highways planned, 1,000 station in 2020, and 5,000 stations in 2030.



Based on publicly available information during 2011

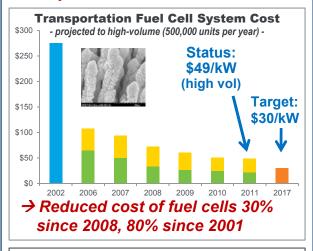
DOE Program Structure

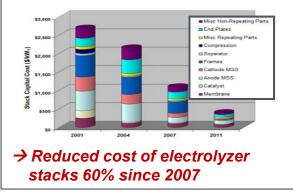
ENERGY Energy Efficiency & Renewable Energy

The Program is an integrated effort, structured to address all the key challenges and obstacles facing widespread commercialization.

WIDESPREAD COMMERCIALIZATION ACROSS ALL SECTORS

- Transportation
- Stationary Power
- Auxiliary Power
- Backup Power
- Portable Power


Nearly 300 projects currently funded at companies, national labs, and universities/institutes More than \$1B DOE funds spent from FY 2007 to FY 2011


Federal Role in Fuel Cells: RD&D to Deployments

DOE R&D

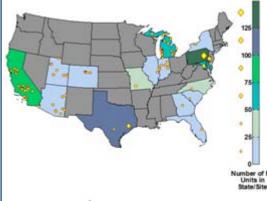
• Reduces cost and improves performance

Examples:

DOE Demonstrations & Technology Validation

- Validate advanced technologies under realworld conditions
- Feedback guides R&D

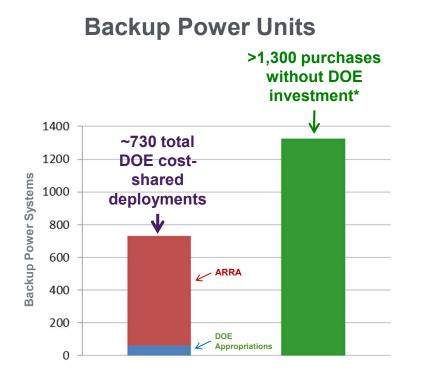
Examples—validated:


- 59% efficiency
- 254 mile range (independently validated 430-mile range)
- 75,000-mi durability

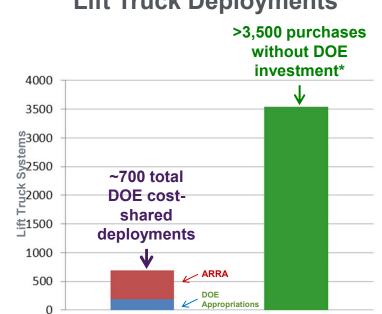
Program also includes enabling activities such as codes & standards, analysis, and education.

Deployments

- Market Transformation
- DOE Recovery Act Projects
- Government Early Adoption (DoD, FAA, California, etc.)
 - IDIQ*
- Tax Credits: 1603, 48C


Recovery Act & Market Transformation Deployments

- > 1,000 fuel cell deployments in ~ 2 years
 > 1 million hours of operation
- *IDIQ = indefinite duration/indefinite quality


Early Market Deployment Summary

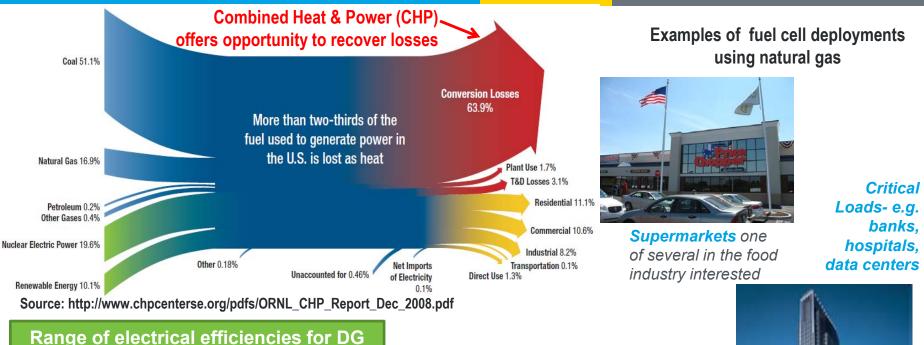
Early market deployments of approximately 1,400 fuel cells have led to more than 5,000 additional purchases by industry—with no further DOE funding.

Leveraging DOE funds: DOE deployments led to almost 2X additional purchases by industry.

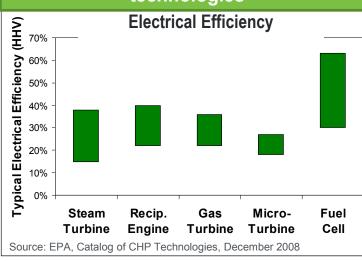
*industry purchases include units on order

Leveraging DOE funds: DOE deployments led to >5X additional purchases by industry.

Lift Truck Deployments


U.S. DEPARTMENT OF

Energy Efficiency &


Renewable Energy

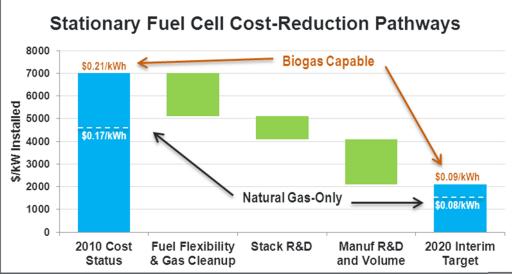
eere.energy.gov

Opportunities for Distributed Generation (DG) and Efficient use of Natural Gas- and Biogas?

Range of electrical efficiencies for DG technologies

Energy Efficiency &

Renewable Energy


New World Trade Center (Freedom Tower) will use **12 fuel cells totaling 4.8MW**

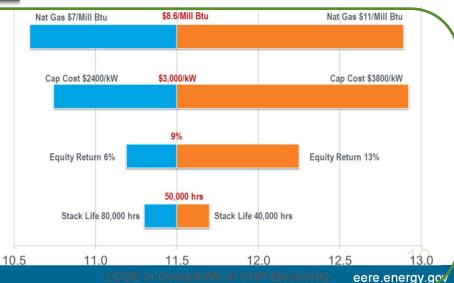
U.S. DEPARTMENT OF

ENERGY

Challenges and Strategy: Stationary Applica

Further reduction in capital cost of medium scale DG/CHP(100kW-3 MW) need to be pursued to facilitate widespread commercialization

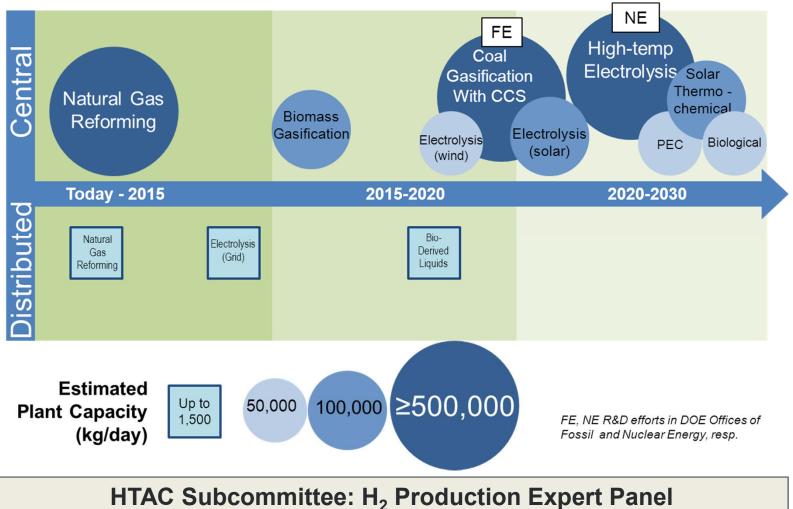
 Further reduction of fuel cell system cost required to expedite commercialization


Energy Efficiency & Renewable Energy

- Natural gas availability and fuel cell performance (efficiency) gains will enhance the technology's market attractiveness
- Development of a cost-effective process for removing fuel contaminants would allow for fuel flexibillity

Also applicable for trigen (H_2 production)

Sensitivity analysis around 2015 targets assesses impact of fuel cell system cost and durability on commercialization prospects



Hydrogen Production - Strategies

ENERGY Energy Efficiency & Renewable Energy

Develop technologies to produce hydrogen from clean, domestic resources at a delivered and dispensed cost of \$2-\$4/gge H₂ by 2020

Review underway to provide recommendations to DOE

H₂ Production & Delivery Cost Status

ENERGY Energy Efficiency & Renewable Energy

The revised hydrogen threshold cost is a key driver in the assessment of Hydrogen Production and Delivery R&D priorities

Projected High-Volume Cost of Hydrogen Production¹ (Delivered²)—Status

Distributed Production (near term)

Electrolysis

Feedstock variability: \$0.03 - \$0.08 per kWh

🔝 Bio-Derived Liquids

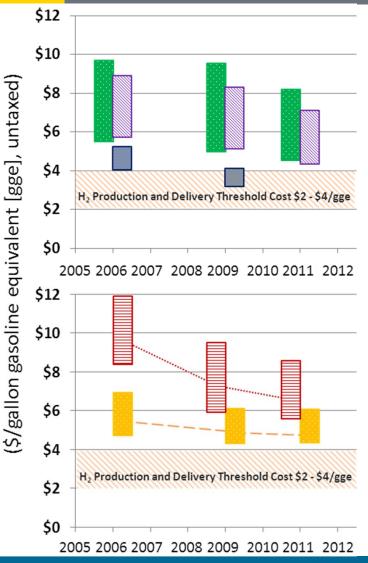
Feedstock variability: \$1.00 - \$3.00 per gallon ethanol

Natural Gas Reforming

Feedstock variability: \$4.00 - \$10.00 per MMBtu

Central Production (longer term)

Electrolysis

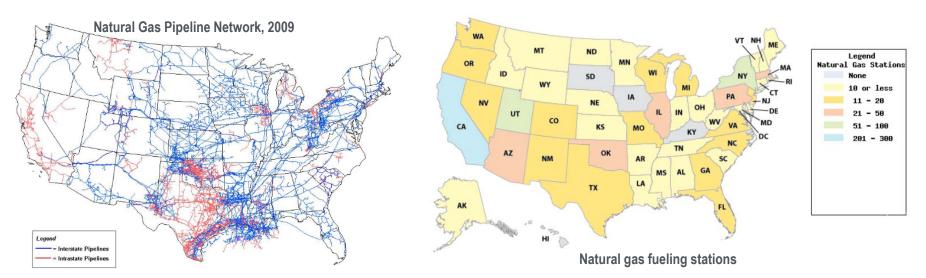

Feedstock variability: \$0.03 - \$0.08 per kWh

Biomass Gasification

Feedstock variability: \$40- \$120 per dry short ton

Notes:

[1] Cost ranges for each pathway are shown in 2007\$ based on high-volume projections from H2A analyses, reflecting variability in major feedstock pricing and a bounded range for capital cost estimates.
 [2] Costs include total cost of production and delivery (dispensed, untaxed). Forecourt compression, storage and dispensing added an additional \$1.82 for distributed technologies, \$2.61 was added as the price of delivery to central technologies. All delivery costs were based on the Hydrogen Pathways Technical Report (NREL, 2009).

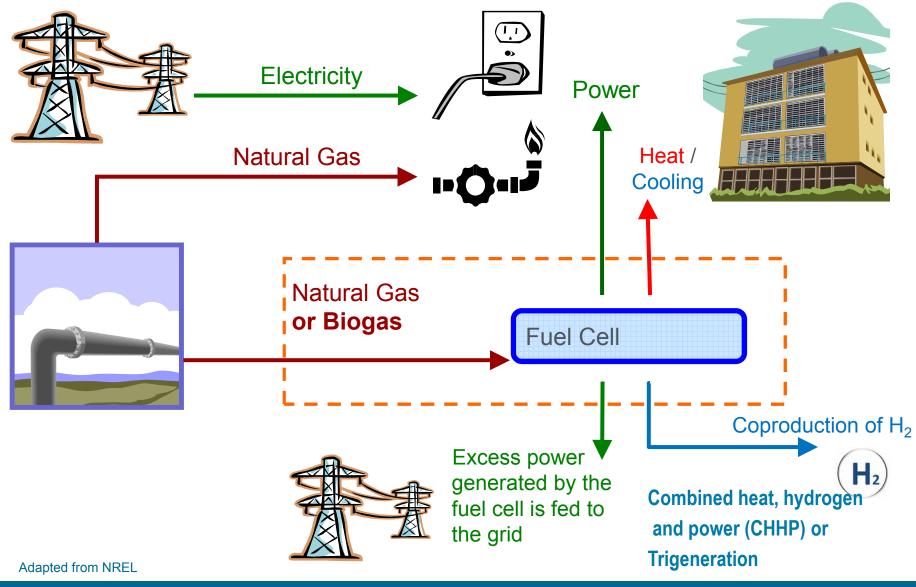

Two Main Options for Low-cost Early Infrastructure

- 1. Hydrogen delivered from central site
 - Low-volume stations (~200-300 kg/day) would cost <\$1M and provide hydrogen for \$7/gge (e.g., high-pressure tube trailers, with pathway to \$5/gge at 400–500 kg/day- comparable to ~\$2.10/gallon gasoline untaxed)

2. Distributed production (e.g. natural gas, electrolysis)

Other options

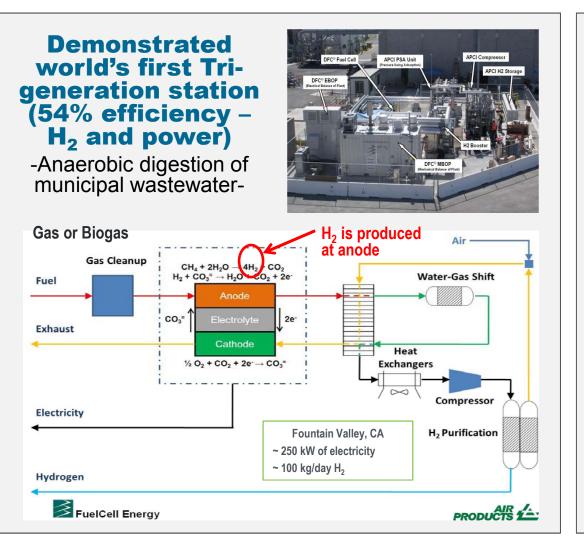
- 1. Co-produce H₂, heat and power (tri-gen) with natural gas or biogas
- 2. Hydrogen from waste (industrial, wastewater, landfills)


Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

Energy Efficiency & <u>Renewable Energy</u>

Overview of Combined Heat-Power

ENERGY Energy Renewa

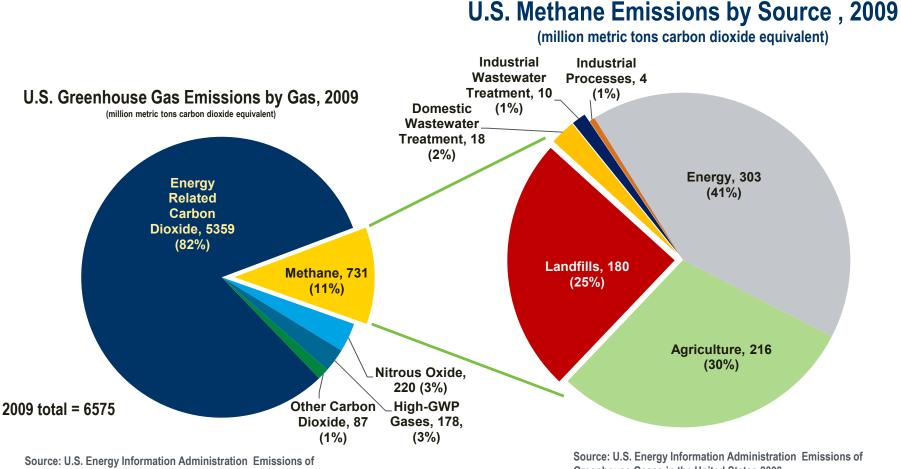

Energy Efficiency & Renewable Energy

Tri-Generation of Heat, Hydrogen, and U.S. DEPARTMENT OF Power

Potential Opportunity

Does a synergy exist between stationary and transportation sectors?

Is tri-generation a viable option for H₂ production and synergy with biogas?


Energy Efficiency & Renewable Energy

- Co-produce H₂, power, and heat for multiple applications?
- More efficient use of natural gas?
- Use a renewable resource in anaerobic digester gas?
- Use off-gas from other waste material processing (e.g., gasifiers)?
- Establish an early market infrastructure?

U.S. Greenhouse Gas and Methane Emissions

Landfills and Wastewater Treatment contribute ~30% of Methane Emissions in the U.S.

Greenhouse Gases in the United States 2009

Greenhouse Gases in the United States 2009

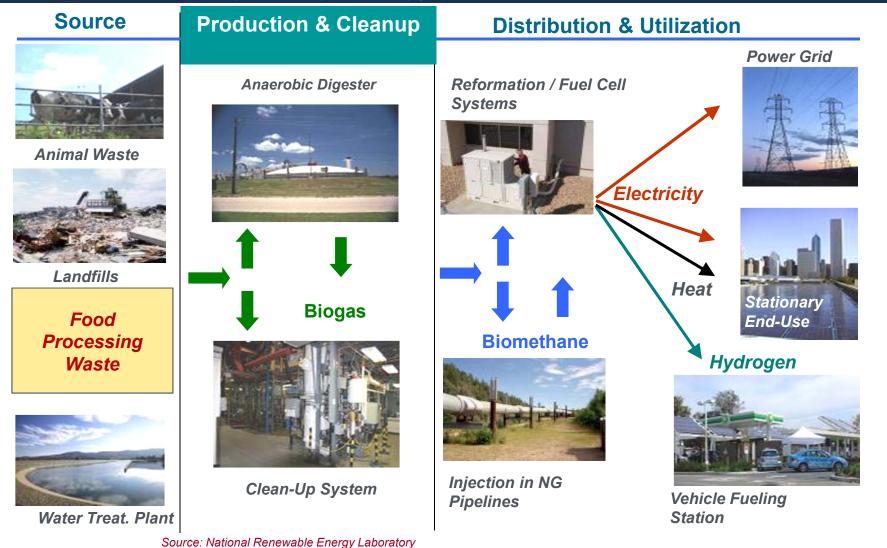
U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Opportunities for Biogas Applications

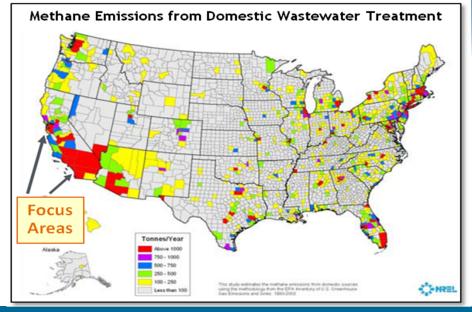

Fuel cells operating on bio-methane or hydrogen derived from bio-methane can mitigate energy and environmental issues and provide an opportunity for their commercialization. Other drivers are: need for fuel diversity/flexibility, evolving policies for renewables, and related incentives.

U.S. DEPARTMENT OF

ENERGY

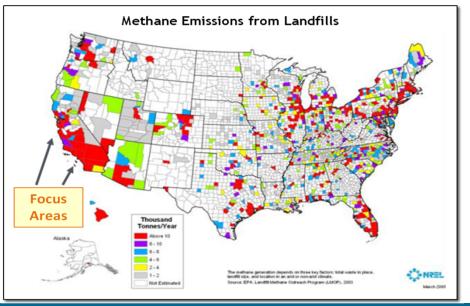
Energy Efficiency &

Renewable Energy


Biogas as an Early Source of Renewable Hydrogen and Power

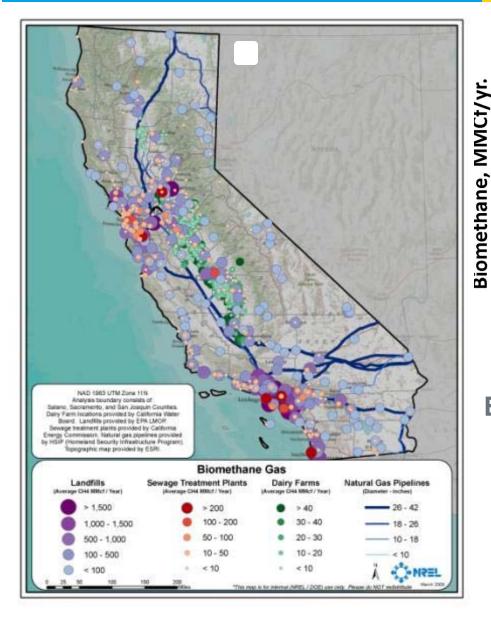
- **ENERGY** Energy Efficiency & Renewable Energy
- The majority of biogas resources are situated near large urban centers—ideally located near the major demand centers for hydrogen generation for hydrogen fuel cell vehicles (FCEVs) and power generation from stationary fuel cells.
- Hydrogen can be produced from this renewable resource using existing steam-methane-reforming technology.

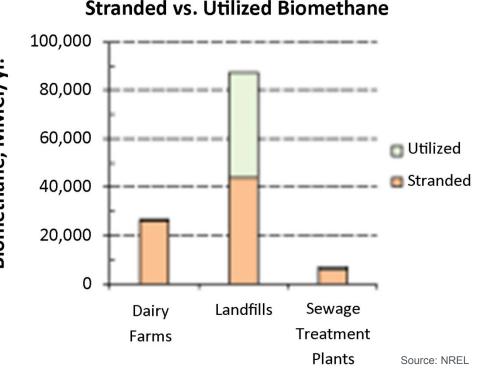
U.S. biogas resource has capacity to produce ~5 GW of power at 50% electrical efficiency.


SOURCE: Wastewater Treatment, *could provide enough H*₂ *to refuel* ~600,000 *vehicles/ day.*

- 500,000 MT per year of methane is available from wastewater treatment plants in the U.S.
- ~50% of this resource could provide ~340,000 kg/day of hydrogen.

SOURCE: Landfills, could provide enough H₂ to refuel ~13 million vehicles/day.

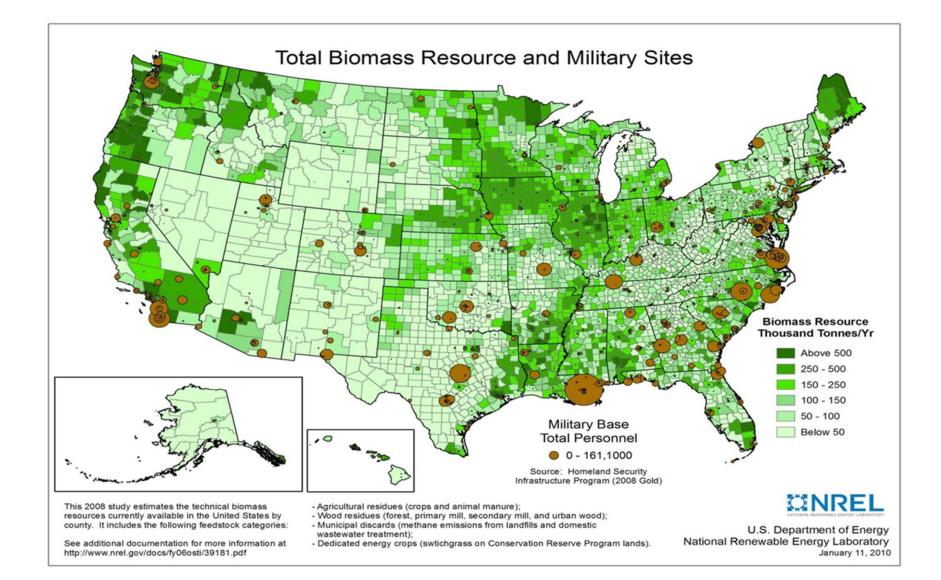

- 12.4 million MT per year of methane is available from landfills in the U.S.
- ~50% of this resource could provide ~8 million kg/day of hydrogen.



eere.energy.gov

California Example: **Potential Sources of Biogas**

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy


Stranded vs. Utilized Biomethane

Example:

- Landfills offer ~1.6 M tons/yr of biomethane.
 - Only ~50% of the landfill biomethane is used

Potential Resources Near DOD Sites

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy

DEMO Deployment – BMW Plant

Validate fuel cell powered material handling equipment low-cost hydrogen from land fill gas including performance, operation and maintenance, durability, and reliability under real-world operating conditions.

Phase 1: Feasibility Study Completed 26 October 2011

Phase 2: LFG-to-Hydrogen Conversion 8 months nominal; target completion date: July 2012

Critical milestones:

Land, interconnect, start up and test equipment Monitor hydrogen purity for at least 2 months

Phase 3: Side-by-Side Trial (to be funded) 6 months from satisfactory completion of monitoring portion of Phase 2 Target completion date: January 2013 Critical milestones:

Operate test group of MHE to attain 25,000 run hours Continue monitoring hydrogen purity of LFG-sourced hydro Project Lead: SCRA Project Partners:

• BMW

U.S. DEPARTMENT OF

- Gas Technology Institute
- Ameresco, Inc.

Energy Efficiency &

Renewable Energy

Examples of Fuel Cell CHP Industry Deployments

Energy Efficiency & Renewable Energy

The Food Industry and Waste Treatment are emerging markets for stationary fuel cells

- <u>Completed Food Producer Deployments</u>:
 - Gills Onions (CA, 600 kW)
 - 2-300kW fuel cells
 - Generates power for facility @ 47% electrical efficiency
 - Processes ~32 scfm of biogas per fuel cell
 - Sierra Nevada Brewery (CA, 1 MW)
 - Generates ~100% of brewery's electrical demand
 - Waste heat used for generating steam and boiling beer

Waste Treatment Deployments:

Nine Sites Include

- Orange County Sanitation District (CA, 300 kW)
 - 1-300 kW fuel cell
 - Operates on biogas from wastewater treatment plant
 - Produces >100 kg/day of fuel cell grade hydrogen (99.9999% purity)
- Tulare (CA, 1 MW)
 - 4-300 kW fuel cells
 - Generates ~50% of waste water treatment plant's electrical demand
 - Waste heat used for anaerobic digestion process

Recently Released States Reports

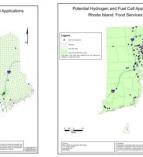
ENERGY Energy Efficiency & Renewable Energy

Northeast Hydrogen Fuel Cell Industry Status and Direction

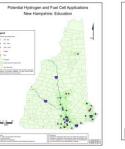
Report by Joel M. Rinebold, Alexander C. Barton, and Adam J. Brzozwski Connecticut Center for Advanced Technology, Inc. Highlights potential for fuel cell industry in northeast US detailing relevant information on products and markets, employment, and system efficiency and cost.

1.85 GW opportunity identified.

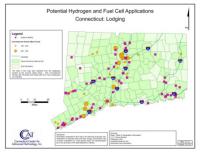
See report: http://dl.dropbox.com/u/53527617/NORTHEAST%20HYDROGEN%20FUEL% 20CELL%20INDUSTRY%20STATUS%20AND%20DIRECTION%202012.pdf



State by state plans identifying fuel cell opportunities and potential implementation strategies (drafts in process)

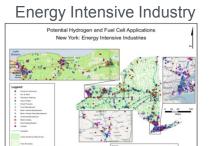

Targets: Geographic Information System (GIS) Mapping

Food Services


Food Sales

Education Airports (Military)

Lodging



Inpatient Healthcare

tary) Alternative Fueling Stations

eere.energy.gov

U.S. DEPARTMENT OF ENERGY RE

Energy Efficiency & Renewable Energy

Targets: Breakdown Example for 300 kW Stationary

Category	Total Potential		MWs	MW-hrs per	MW at 90% Capacity	Aggregate Annual Thermal Output		CO2 emissions
	Sites S	Sites		year	Factor	MMBTU	MWh	
Education	18,335	2,190	210.9	1,662,735.6	189.81	4,478,301.22	1,312,515.01	434,286.20
Food Sales	51,300	1,201	360.3	2,840,605.2	324.27	7,650,696.67	2,242,290.94	642,698.16
Food Services	64,600	387	116.1	915,332.4	104.49	2,465,295.26	722,536.71	219,715.25
Inpatient Healthcare	3,994	422	126.6	998,114.4	113.94	2,688,254.78	787,882.41	232,631.61
Lodging	8,033	884	265.2	2,090,836.8	238.68	5,631,320.45	1,650,445.62	484,156.44
Public Order & Safety	3,310	313	93.9	740,307.6	84.51	1,993,895.14	584,377.24	179,454.82
Energy Intensive Industries	4,758	429	128.7	1,014,670.8	115.83	2,732,846.69	800,951.55	223,655.68
Government Operated Buildings	1,255	90	27.0	212,868.0	24.30	573,324.48	168,031.79	49,990.87
Wireless Telecommunication Towers*	3,960	397		-	-	-	-	-
WWTPs	578	16	4.8	37,843.2	4.32	101,924.35	29,872.32	8,417.75
Landfills	213	14	4.2	33,112.8	3.78	89,183.81	26,138.28	7,327.39
Airports (w/ AASF)	842	50 (20)	16.2	127,720.8	14.58	343,994.69	100,819.08	31,414.59
Military	14	14	4.2	33,112.8	3.78	89,183.81	26,138.28	59,737.86
Ports	120	19	5.7	44,938.8	5.13	121,035.17	35,473.38	10,272.06
Total	161,312	6,426	1,363.8	10,752,199.2	1,227.42	28,959,256.51	8,487,472.60	2,064,422.25

* No Base Load

The Connecticut Center for Advance Technology, Inc.

Northeast Hydrogen Fuel Cell Cluster

Policies and Incentives ME NH VT MA **RI CT NY Energy Policy** Mandatory Renewable Portfolio Standard (RPS) Fuel Cell Eligibility * * * Interconnection Standards (Includes Fuel Cells) * * * * * * * * * * Net Metering (Includes Fuel Cells) * * * * Public Benefits Fund (Includes Fuel Cells) Renewable Greenhouse Gas Initiative (RGGI) Member State Incentives for Fuel Cells * Performance-Based ** * * State Grant Program State Loan Program * * State Rebate Program * * * Property Tax Incentive (Commercial) Sales Tax Incentive * Industry Recruitment/ Support * * Property-Assessed Clean Energy (PACE) Financing ** All fuel **

cell types

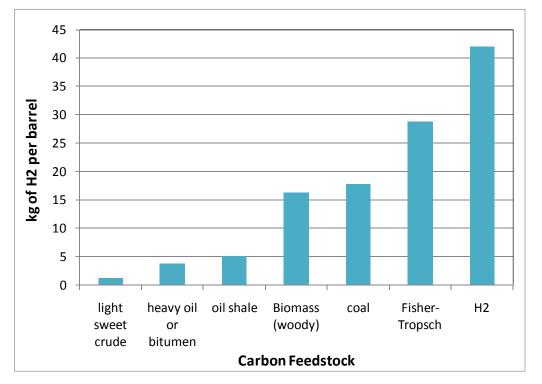
Fuel cells using renewable fuels

Renewable energy eligible technology to be locally determined

eligible through Green Communities program

U.S. DEPARTMENT OF

www.dsireusa.org


Energy Efficiency &

Renewable Energy

The Connecticut Center for Advance Technology, Inc.

ENERGY Energy Efficiency & Renewable Energy

Hydrogen requirements for processing of carbon feedstocks to produce liquids fuels¹

¹"Review of the Potential of Nuclear Hydrogen for Addressing Energy Security and Climate Change," James E.O'Brien, *Nuclear Technology*, VOL. 178 nr 1, pp 55-65, April 2012.

Hydrogen Demand for Biomass Upgrading

Production of pyrolysis oil from corn stover

- Annual corn stover production is ~400 million tons and represents ~40% of the biomass resource in the U.S.¹
- Thermal conversion of ~2000 metric tons/d of corn stover yields ~3,500 bbls /day of pyrolysis oil.²
- Upgrading and stabilization of pyrolysis oil to naphtha and diesel products requires ~49,000 kg/d (~18 million kg/yr.) of hydrogen.
- Thermal conversion of the corn stover biomass to upgraded pyrolysis oil would require ~9-10 million metric tons/yr.

Notes:

¹Amount of corn stover was obtained from second Billion Ton Study. ²Source for the hydrogen demand was an NREL study Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels by Mark M. Wright, Justinus A. Satrio, and Robert C. Brown Iowa State University Daren E. Daugaard ConocoPhillips David D. Hsu NREL

- What RD&D is needed by government and industry to enable more biogas use for fuel cell?
 - > What are the key challenges?
 - > What are the next steps to address them?
 - > What are the priorities?
- > What are the best near term applications (now to 2015)?
- > What are the best mid-term applications (2016 -2020)?
- > Other Questions:
 - How will biogas be integrated with the NG infrastructure? Can tri-gen/other options be used to produce H₂ for biomass processes?
 - > What other issues do we need to address?

Thank You

Sunita Satyapal sunita.satyapal@ee.doe.gov

www.hydrogen.energy.gov

Supplemental Material

EERE H₂ & Fuel Cells Budgets

ENERGY Energy Efficiency & Renewable Energy

FY12 Appropriations: "The Committee recognizes the progress and achievements of the Fuel Cell Technologies program. The program has met or exceeded all benchmarks, and has made significant progress in decreasing costs and increasing efficiency and durability of fuel cell and hydrogen energy systems."

EERE FO			
Key Activity	FY 2011 Allocation	FY 2012 Appropriation	FY 2013 Request
Fuel Cell Systems R&D	41,916	44,812	38,000
Hydrogen Fuel R&D	32,122	34,812	27,000
Technology Validation	8,988	9,000	5,000
Market Transformation	0	3,000	0*
Safety, Codes & Standards	6,901	7,000	5,000
Education	0	0	0
Systems Analysis	3,000	3,000	3,000
Manufacturing R&D	2,920	2,000	2,000
Total	\$95,847	\$103,624	\$80,000*

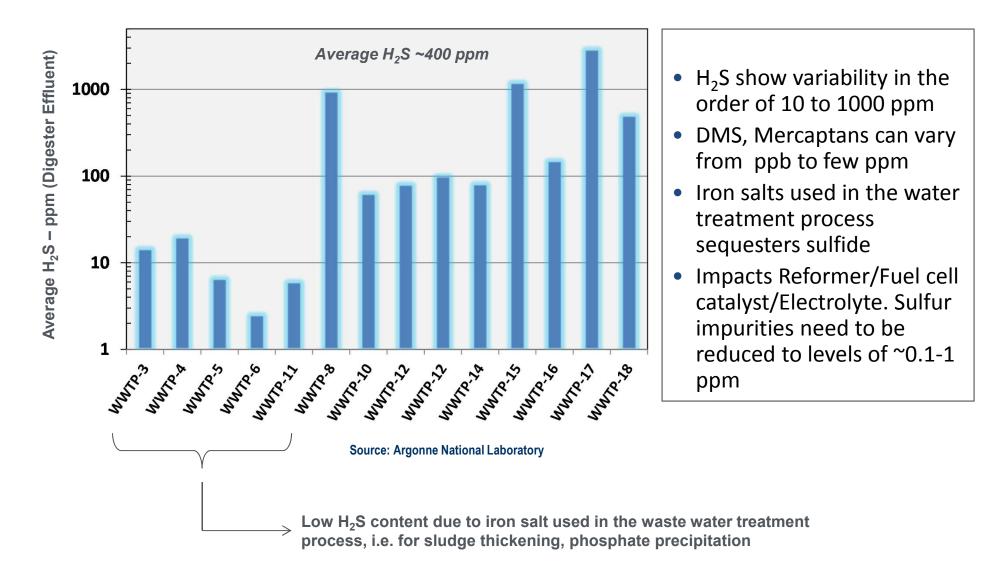
FY 2013 House Mark: \$82M Senate Mark: \$104 M

Future Directions

Continue critical R&D

Hydrogen, fuel cells, safety, codes and standards, etc.

Conduct strategic, selective demonstrations of innovative technologies


Continue to conduct key analysis to guide RD&D and path forward, determine infrastructure needs

Leverage activities to maximize impact

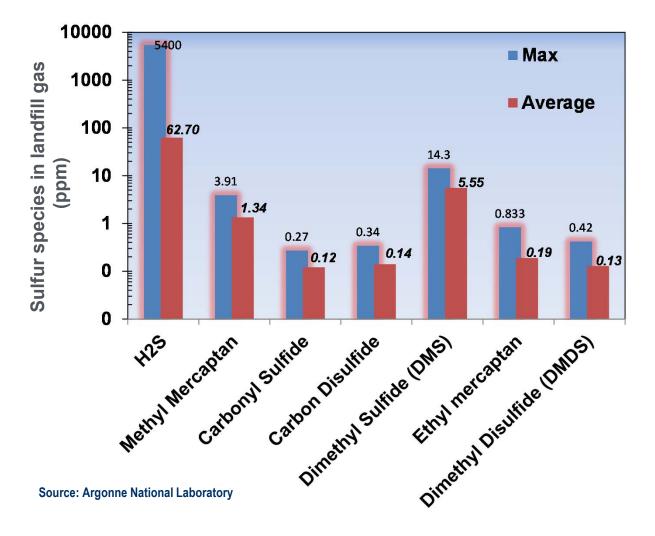
*In FY 2013, the Program plans to leverage activities in other EERE Programs (e.g., Advanced Manufacturing and Vehicle Technologies in key areas), *subject to appropriations.*

Hydrogen Sulfide (H₂S) Content of Digester Gas

The bulk of total sulfur species in the digester gas is mainly H_2S

U.S. DEPARTMENT OF

Energy Efficiency &

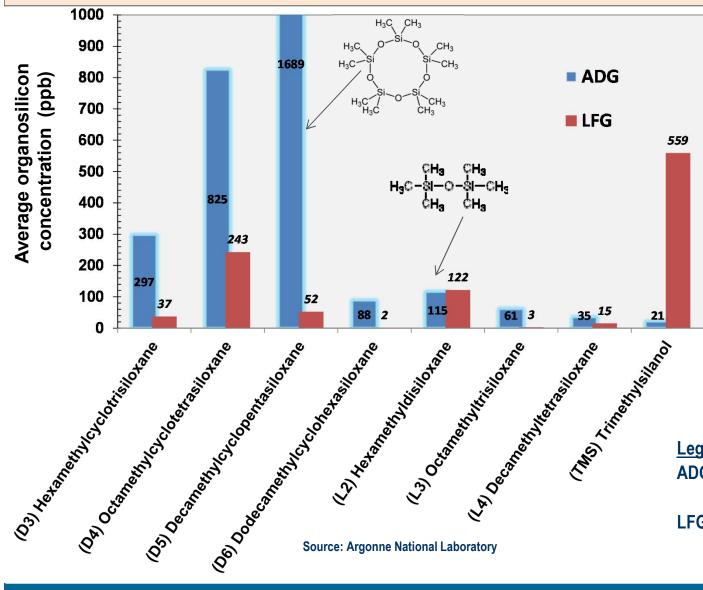

Renewable Energy

Sulfur Species Content of Land Fill Gas

ENERGY Energy Efficiency & Renewable Energy

Land Fill Gas contains a wide spectrum of sulfur compounds creating a

challenge for impurity cleanup

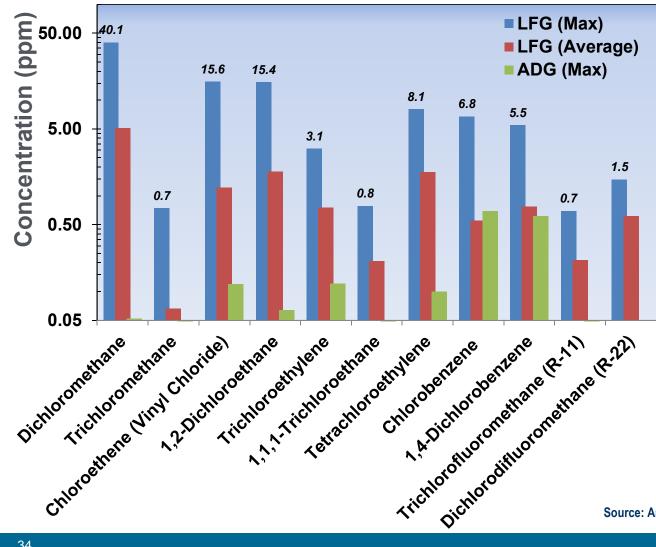


Concentration of organic sulfur is higher in landfill gas in particular Dimethyl Sulfide (DMS)

Siloxane Content of Land Fill and Anaerobic Digester Gases

Energy Efficiency & Renewable Energy

Digester gas contains predominately cyclic (D4,D5) organosilicon (siloxanes) species


- Cyclic compounds (D4 & D5) are dominant in WWTP gas
- Concentration of linear compounds and TMS are usually low
- ADG temperature affects speciation and concentration of siloxane compounds
- Solid silica deposits on surfaces. Tolerance level often require "below detection limit"

Legend: ADG – Anaerobic Digestion Gas

LFG – Land Fill Gas

U.S. DEPARTMENT OF **Energy Efficiency &** Renewable Energy

Landfill gas contains a variety of halocarbons and at much higher concentrations than Digester Gas

- Concentration of halogens are generally much lower in WWTP than LFG gas
- Chlorine is the dominant

halogen species

- Forms corrosive gases, combustion or reforming
- Affects long-term performance of fuel cell

Legend:

ADG – Anaerobic Digestion Gas

LFG – Land Fill Gas

Source: Argonne National Laboratory

What are the tolerance limits for the Fuel Cells?

ENERGY Energy Efficiency & Renewable Energy

Sulfur

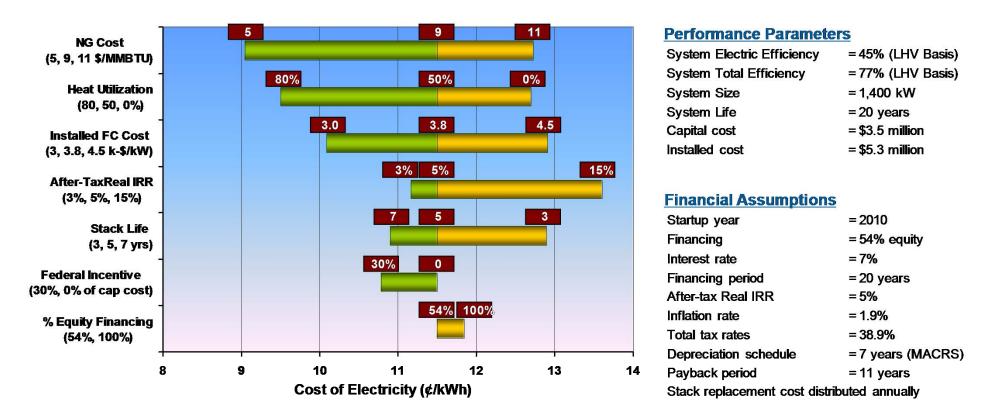
- Corrosive, affects catalyst and electrolyte
- Rapid initial followed by slower voltage decay. Effect may be recoverable
- Tolerance limits 0.5-5 ppm
- More severe effect with CH₄/CO rich fuels to Fuel Cell and anode recirculation

Siloxanes

- Thermally decompose forming glassy layers
- Fouls surfaces (HEx, sensors, catalysts)
- Few studies on the effects on FC's, but tolerance limits may be practically zero

Halogens

- Corrosive, affects electrolyte
- Long term degradation effect
- Tolerance limits, 0.1-1 ppm


Source: Argonne National Laboratory

	Impurity	Tolerance		Reference		
	Nolten Carbonate Fuel Cells					
ļ	H ₂ S	0.1 0.5 0.1-5	ppm	(Tomasi, <i>et al.</i> , 2006) (Abe, Chaytors, Clark, Marshall and Morgan, 2002) (Moreno, <i>et al.</i> , 2008) (Desiduri, 2003)		
	COS, CS ₂ , mercaptan	1	ppm	(Tomasi, Baratieri, Bosio, Arato and Baggio, 2006)		
	Organic Sulfur	<6	ppm	(Lampe, 2006)		
	H ₂ S, COS, CS ₂	0.5-1 <10	ppm	(Cigolotti, 2009) (Lampe, 2006)		
	Halogens (HCl)	0.1-1	ppm	(Moreno, McPhail and Bove, 2008) (Desiduri, 2003), Lampe, 2006) (Abe, Chaytors, Clark, Marshall and Morgan, 2002)		
	Halides: HCl, HF	0.1-1	ppm	(Cigolotti, 2009)		
	Alkali Metals	1-10	ppm	(Tomasi, Baratieri, Bosio, Arato and Baggio, 2006) (Moreno, McPhail and Bove, 2008)		
t ,	NH ₃	1 1-3	%	(Moreno, McPhail and Bove, 2008) [Desiduri, 2002], [Fuel Cell Handbook, 2002] (Cigolotti, 2009) (Moreno, McPhail and		

Siloxanes: HDMS, D5	10-100 <1	ppm	(Cigolotti, 2009) (Lampe, 2006)
Tars	2000	ppm	(Cigolotti, 2009)
Heavy Metals: As, Pb, Zn, Cd,Hg	1-20	ppm	(Cigolotti, 2009)

ENERGY Energy Efficiency & Renewable Energy

Cost of Electricity from Commercial-Scale Stationary Fuel Cell

Operation Assumptions

System utilization factor Restacking cost Heat value

- = 95%
- = 30% of installed cap. cost
- = cost of displaced natural gas from 80% efficient device

Source: NREL Fuel Cell Power Model

MCFC 1.4 MW

Challenges & Strategy

Application-driven targets for commercial viability in terms of cost and

U.S. DEPARTMENT OF

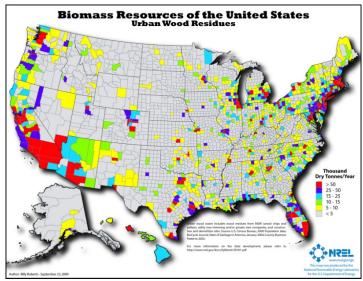
performance recently revised and updated

Example of system level targets:

Technical Targets: 1–10 kW _e Residential C Fuel Cell System			outed Generation	
Characteristic	2011 Status	2015 Targets	2020 Targets	Targets r
Electrical efficiency at rated power	34-40%	42.5%	>45%	for the c
CHP energy efficiency	80-90%	87.5%	90%	portfolio
Equipment cost, 2-kW _{avg} system	NA	\$1,200/kW _{avg}	\$1,000/kW _{avg}	R&D for
Equipment cost, 5-kW _{avg} system	\$2,300 - \$4,000/kW	\$1,700/kW _{avg}	\$1,500/kW _{avg}	transpor
Equipment cost, 10-kW _{avg} system	NA	\$1,900/kW _{avg}	\$1,700/kW _{avg}	stationar
Transient response (10 - 90% rated power)	5 min	3 min	2 min	portable application
Start-up time from 20°C ambient temperature	<30 min	30 min	20 min	
Degradation with cycling	<2%/1,000 h	0.5%/1,000 h	0.3%/1,000 h	1
Operating lifetime	12,000 h	40,000 h	60,000 h	
System availability	97%	98%	99%	

evised mplete quiding ation, , and ns

Energy Efficiency & Renewable Energy


Revised targets in recently released MYRDD Plan http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/index.html

Waste To Energy Example Los Alamitos Joint Forces Training Base (JFTB)

ENERGY Energy Efficiency & Renewable Energy

Los Alamitos JFTB

National Renewable Energy Laboratory Innovation for Our Energy Future

• 19,200 kW

Urban wood waste is an abundant feedstock around the US

Examples of DOE Funded Fuel Cell Deployments

U.S. Fuel Cell Deployments Using DOE Market Transformation and Recovery Act Funding

Primarily forklifts and back-up power units

Tactical WTE Efforts & Demos*

- Defense Advanced Research Projects Agency (DARPA) and Army Research Lab (ARL)
 - Basic research and fundamental technology development (MISER, etc)

Natick Soldier RDEC (NSRDEC)

- Combination of SBIR and mission funded projects for Waste to Energy Converter (WEC) since 2000 Contractors include Community Power Corp (CPC), Infoscitex, General Atomics, and Green Liquid and Gas Technologies
- Targeting PM Force Provider for technology transition / deployment
- Mobile Encampment Waste to Electrical Power System (MEWEPS) project with CPC, second field demonstration scheduled at Ft. Irwin, CA in Feb 2011

Edgewood Chemical / Biological Center (ECBC)

 Tactical Garbage to Energy Refinery (TGER) AIDE project with DLS, Purdue University, and CPC, field demonstration executed in theater

Communications-Electronics RDEC (CERDEC)

- Biofuel / Tactical Quiet Generator Hybrid Waste to Energy project with CPC, contract on-going

Other Potential Opportunities

- Fort Stewart 94,000 lbs/hr steam Wood Chip Plant (off line).
- Aberdeen Proving Ground Offsite plant supplies approx 70,000 lbs/hr (peak) and approx 452,000 Mlbs total 350 psi steam/year.
- The Eielson Air Force Base system processed over 560 tons of paper products in the base's central heat and power plant which provided 7.82 mmBtu of energy (program currently suspended because the pellet plant is inoperable).
- Hill Air Force Base, which generated 2.1 MW of electricity from landfill gas and has plans to expand to 3.2 MW.
- Dyess Air Force Base which is pursuing a 5.5 MW municipal solid waste energy plant.
- SUNY Cobleskill Bioenergy Center

* Information provided by Daniela Caughron, APG

U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

Renewable Energy

Biogas Barriers

ENERGY Energy Efficiency & Renewable Energy

Use of biogas for hydrogen production as transportation fuel and stationary fuel cells for power and heat generation will be impacted by contaminant content and cleanup costs.

Barriers

High level of contaminants

High variability of contaminant concentrations

High capital cost for contaminant removal

Low experience level with biogas cleanup

Location of resources relative to demand centers and understanding cost impacts of transportation

Activities

Held workshops to understand gaps for utilizing biogas for hydrogen and power production

Working with Argonne National Laboratory to understand impact of biogas impurities on stationary fuel cell performance

Working with National Renewable Energy Laboratory on location of biogas resources and development of biogas H2A model for biogas cost analysis

Funding Opportunity Announcements & Requests for Information

ENERGY Energy Efficiency & Renewable Energy

FY 2012 FOAs	FY 2012 Funding
Collect Performance Data on Fuel Cell Electric Vehicles (deadline extended 6/18)	\$6.0 million
Hydrogen Fueling Stations and Innovations in Hydrogen Infrastructure Technologies (closed 5/11)	\$2.0 million
Fuel Cell Powered Baggage Vehicles at Commercial Airports	\$2.5 million
Zero-Emission Cargo Transport Vehicles (Vehicle Technologies, closes 5/15)	\$10.0 million

Requests for Information

- Fuel Cell RFIs on Targets for Lift Trucks and Backup Power
- Potential Topics for H-Prize—*extended to May 31, 2012* (www.hydrogenandfuelcells.energy.gov/m/news_detail.html?news_id=18182)
- Storage RFI on Early Market Targets (Posted on eXCHANGE at <u>https://eere-exchange.energy.gov/Default.aspx#6d785cb1-552e-44bd-98e3-e27a7e3fea0b)</u>