
Fuel Cell Power Plants Biofuel Case Study – Tulare, CA

DOE-NREL Workshop Golden, CO June 11-13, 2012

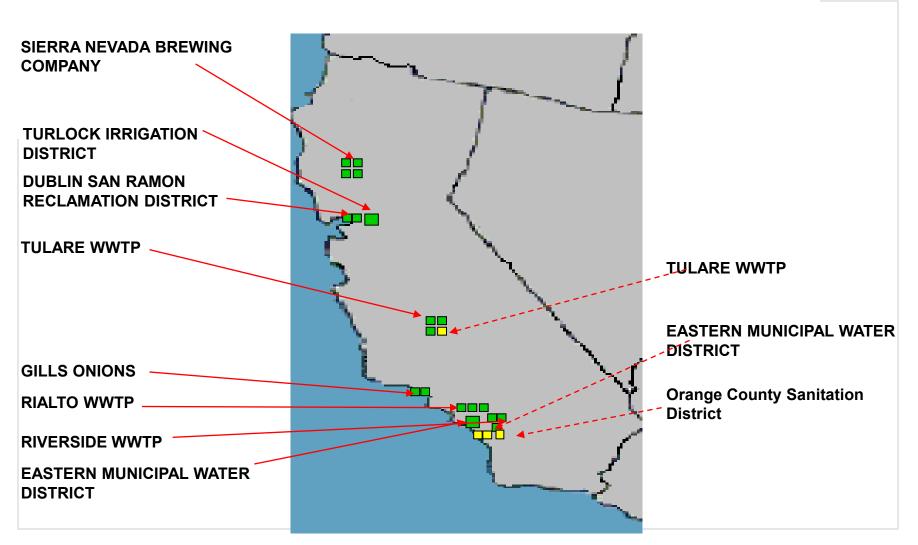
reliable, efficient, ultra-clean

Integrated Fuel Cell Company

Delivering ultra-clean baseload distributed generation globally

600 kW plant at a food processor

1.4 MW plant at a municipal building

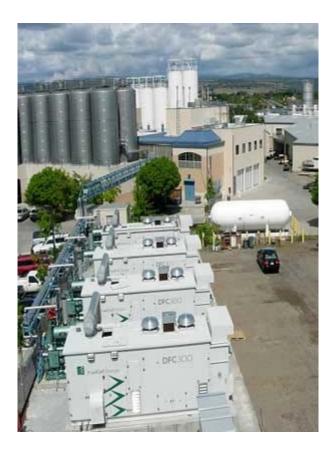

2.4 MW plant owned by an Independent power producer

11.2 MW plant - largest fuel cell park in the world

FCE Bio-gas Plants

Municipal Waste Water Treatment

- More power for given amount of biogas: Higher efficiency than any other generation at typical digester facility sizes
- Good heat to power ratio for digester support: Fuel cell makes enough heat to support digester operation
- Avoids generation of NO_x and other pollutants from flare or from other generation technologies



Non-Municipal Applications

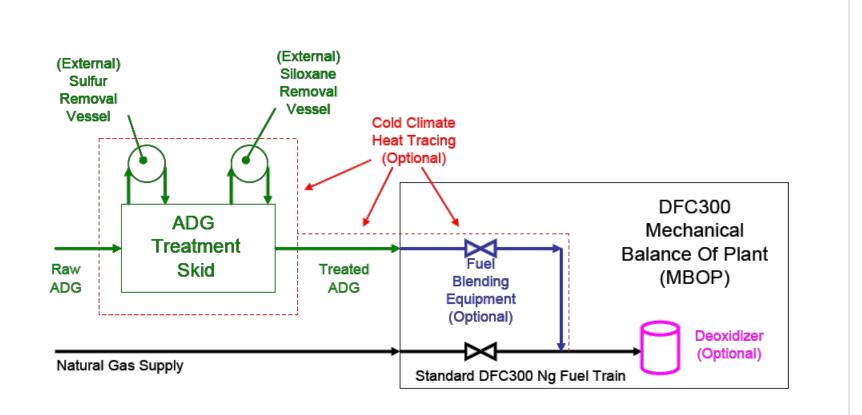
- Fuel Resource Diversity
 - Waste from food and beverage processing
 - Waste from other commercial processes
 - Biofuel production
 - Pharmaceutical Organics
- Other Factors
 - Access to Federal Tax Credits
 - Often smaller scale than municipal applications
 - Often not 24 x 7 operation, requiring alternate fuel for weekend operation

Typical Fuels Composition

Composition	Natural Gas	Biogases			
		Waste Water	Food Waste	Animal Waste	Landfill
Methane (Vol%)	80-100	~50-60	~50-70	45-60	40-55
Carbon Dioxide (Vol%)	<3	30-40	25-45	35-50	35-50
Nitrogen (Vol%)	<3	<4	<4	<4	<20
Oxygen (Vol%)	<0.2	<1	<1	<1	<2
H ₂ S, ppm	<0.1	<400	<10000	<300	<200
Non-H ₂ S Sulfur, ppm	<10	<1	<1000	<30	<30
Halogens, ppm	<0.1	<0.2	<0.2	<0.2	<100
Moisture, %	<0.02	~3	~3	~3	~3

Natural Gas and Digester Gas Fuels

Natural Gas


- 90 100 % Methane, balance typically higher hydrocarbons
- 900 1000 Btu/ft³
- Dry
- Very Low Oxygen, except peak shave gas
- Odorized for safety, typically 3ppm sulfur, max 20 ppm

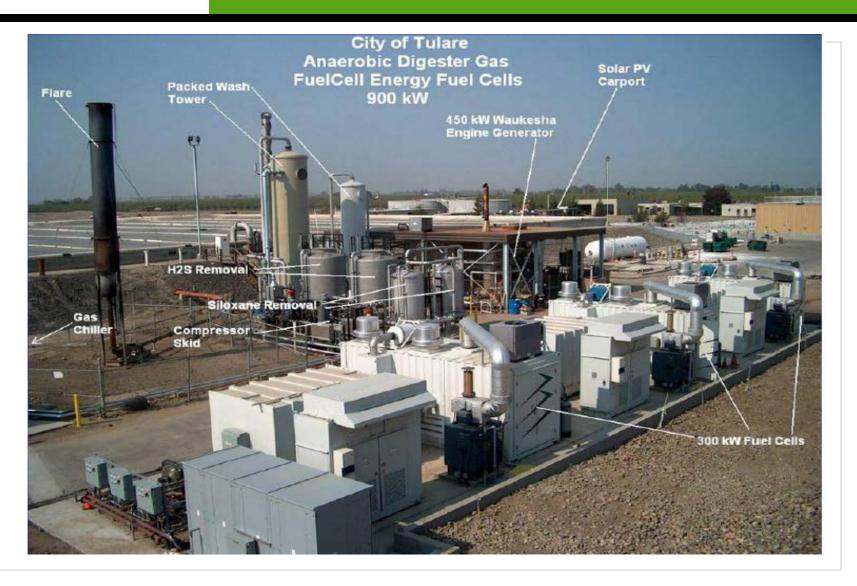
Digester Gas

- 50% 80% Methane (60% typical), balance typically CO₂
- 500 800 Btu, ft³
- Saturated at digester temperature
- Fraction to a few percent Oxygen
- Sulfur present naturally, at tens to hundreds of ppm, also often contains Siloxanes

DFC Digester Gas Processing

Tulare CA WWTP

- Plant Flow 11.5 MGD
- Digester Gas Production 500,000 SCFD
- Production of Biogas in Bulk Volume Fermentor (BVF)
- Electrical Demand 2,700 KW


Tulare CA WWTP Fuel Cell Plant

- 4 FCE DFC300 Fuel Cells 1200 KW (3 initial in 2008, 4th added in 2011)
- Biogas Treatment by Applied Filter Technology (H₂S, Siloxanes and VOC)
- CHP (Hot Water) Heat Recovery
- Electric Interface with Utility (SoCal Edison)

Tulare CA WWTP Fuel Cell and Ancillary Systems

Tulare CA WWTP Key Drivers for Fuel Cell

- Digester Gas
 Previously Flared
- Highest Efficiency Available (47%) for power generation
- Reduce Greenhouse gasses
- Emissions
 Exemptions and Rule
 21 Qualification
- SGIP funding
- Dual Fuel (Natural Gas) Flexibility

Commercial Site BioGas Sierra Nevada Brewery, CA

DFC 300 CHP, 1MW, digester biofuel and natural gas

Food Processing Facility Gills Onions Oxnard, CA

600 KW DFC 300 Units, digester fuel, combined heat and power

Market Drivers

Municipal and Industrial Facilities face disposal issues, a need for clean power to comply with clean air regulations, and ambitious sustainability goals

Fuel Cell Plants Provide Solutions

- Renewable baseload power solves waste disposal problem and provides continuous clean power
- Ultra-clean power facilitates ease of air permitting
- Distributed generation enhances power reliability and energy security
- High efficiency

Fuel Flexibility on varying BTU Gas

- Municipal Wastewater Biogas
- Brewery and Food and Animal Waste
- Biogasifier and Biofuel waste gas

Site Challenges need to be Addressed in Design

- Clean up systems required
- Varying biofuel availability

Fuel Cells Biofuel Renewable Power

