

Hydrogen Storage in Ammonia and Aminoborane Complexes

Ali Raissi Florida Solar Energy Center University of Central Florida

Hydrogen Program Annual Review Session: Hydrogen Storage – Carbon & Other Berkeley, CA – May 21, 2002

Goals and Objectives

Analyze issues of performance, cost & safety of three hydrogen technological areas:

Thermochemical decomposition of SQNG

>Storage in NH₃ & NH₃-based complexes

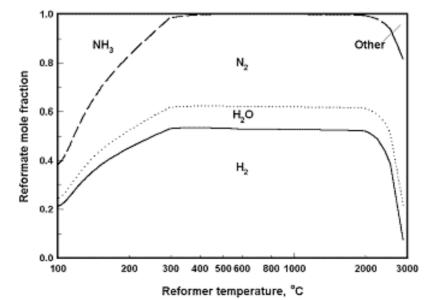
Thermochemical cycles water splitting cycles

All Milestones

(Technical Analysis of Hydrogen Production)

	FY 2003			2004	
Task Description	OND	JFM	AMJ	JAS	OND
I. Hydrogen from Autothermal Reformation of SQNG					
a) FactSage analysis of H ₂ prod ⁿ by autothermal H ₂ S/CH	4 reforma	ation 🛶			
b) ASPEN* analysis of H ₂ prod ⁿ by autothermal H ₂ S/CH.	reforma	tion —	-		
c) ASPEN* analysis of integrated process economics		-	-		
II. Technoeconomics of NH ₂ -based H ₂ Production					
a) Assess feasibility of autothermal reformation of NH3	-				
b) Assess NH ₃ 's potential for small-scale & fixed applica	ations -		•		
c) Identify cost issues, opportunities & challenges	-		-		
III. Hydrogen from Solar TCWSCs	1				
a) ASPEN Plus analysis of candidate solar-TCWSCs		_			
b) ASPEN* analysis of integrated process economics		_	-	•	
c) Paper at Proceedings of the 2003 Hydrogen Program	Annual F	leview -			
IV. Final Project Report				袋	

? End of the Project


Advantages of Ammonia

- Costs about \$150 per short ton or less than \$6.25 per million BTU of H₂ contained
- Contains17.8 wt% hydrogen
- Enjoys established infrastructure for its transportation, distribution, storage and utilization
- > Stores 30% more energy by liquid volume than LH_2
- Easily reformed using 16% of the energy in the fuel
- Reformate for AFC use requires no shift converter, selective oxidizer or co-reactants
- > No need for final hydrogen purification stage

Disadvantages of Ammonia

- Requires sub-ambient T and/or elevated P storage
- Safety concerns with the wide spread use as transportation fuel
- Requires some means for on-board reformation to liberate hydrogen – autothermal reformation is one approach

Chemical Hydrides (CHs) as Hydrogen & Ammonia Storers

- CHs are secondary storage methods (expendable) and their use requires:
- Compatibility with PEMFC (no H_2S , CO or NH_3)
- Load following capability without complex controls
- CHs fall into two classes:
- Hydrolysis hydrides -
 - H_2 is produced by reaction with H_2O , NH_3 , H_2S , etc.
- Pyrolysis hydrides -

Decomposition by heat generates hydrogen

Hydrolysis Hydrides

Reaction	wt% H ₂ Yield	Capacity Wh/kg
$LiH + H_2O \rightarrow LiOH + H_2$	7.7	1,460
LiAlH ₄ + 4 H ₂ O -> LiOH + Al(OH) ₃ + 4 H ₂	7.3	1,380
LiBH ₄ + 4 H ₂ O -> LiOH + H ₃ BO ₃ + 4 H ₂	8.6	1,630
NaBH ₄ + 4 H ₂ O -> NaOH + H ₃ BO ₃ + 4 H ₂	7.3	1,380

Pyrolysis Hydrides

- Combination of a hydride with an ammonium halide, stabilized with polymeric binders (*e.g.* PTFE):
 NH₄F + LiBH₄ = LiF + BN + 4 H₂ (~ 13.6 wt % H₂)
- NH₄X + MH formulations render compound storable, and insensitive to air & moisture
- > $Mg(BH_4)_2.2NH_3/LiNO_3/PTFE: 85/7\frac{1}{2}/7\frac{1}{2}$ wt %
 - gives 12.84 wt% of 99.8% pure H₂
 - impurities include CO, NH₃ & CH₄
- NH₃BH₃/N₂H₄.2BH₃/(NH₄)₂B₁₀H₁₀/ NH₄NO₃: 50/30/9.8/10.2 wt %
 - gives 16.52 wt% of >94% pure H₂
 - impurities include borazine $B_3N_3H_6$
- These reactions are highly exothermic & unstoppable

Amine-Borane Complexes

- > $NH_4BH_4 = BN + 4 H_2$ (24.5 wt % H₂) Unstable above -20 °C, unsuitable
- Ammonia borane (AB) complex:
 NH₃BH₃ = BN + 3 H₂ (20 wt % H₂)
 Requires heating, decomposition at stages from ~130-450 °C

Pyrolysis of AB Complex

- $\begin{array}{ll} \succ & {\rm H_{3}BNH_{3}}\left(l \right) & \rightarrow {\rm H_{2}BNH_{2}}\left(s \right) + {\rm H_{2}}\left(g \right) & ~~137^{\circ}{\rm C} \\ & & {\rm \Delta}{\rm H_{r}} \sim 22 \; {\rm kJ/mol} \end{array}$
- > $x (H_2BNH_2) (s) \rightarrow (H_2BNH_2)_x (s)$ ~125°C
- > $(H_2BNH_2)_x$ (s) → $(HBNH)_x$ (s) + x H₂ (g) ~155°C
- > $(HBNH)_x(s) \rightarrow borazine + other products$
- \succ (HBNH)₃ \rightarrow 3 BN + 3 H₂ $>> 500^{\circ}$ C
- $\succ \quad (H_2 BNH_2)_x (s) \rightarrow (BN)_x (s) + 2x H_2 (g) \qquad \sim 450^{\circ}C$

Ref:

- G. Wolf, et al., Thermochimica Acta 343(1-2): 19-25, 2000.
- V. Sit, et al., Thermochimica Acta, 113, 379-82, 1987.
- M.G. Hu, et al., Thermo-chimica Acta, 23(2), 249-55, 1978.
- R.A. Geanangel & W.W. Wendlandt, Thermochimica Acta, 86, 375-78, 1985.

AB Complex

Property	Description
Formula	NH ₃ BH ₃
Molecular weight	30.86
Odor	Ammonia-like
Density, g/mL	0.74
Melting point	112-114°C, slow decomp ⁿ
	at approx. 70°C
Heat of formation Heat of combustion	ΔH_{f}° = -42.54 ± 1.4 kcal/mol ΔH_{c}° = -322.4 ± 0.7 kcal/mol

Drawback to AB Use

Cost of NH₃BH₃ Production at present feedstock costs & \succ technologies is too high

Required mass, volume and cost of chemical hydrides for specified targeted duty*

Storer	Mass, kg	Volume, I	Cost, US\$
LiH ⁽¹⁾	1.7	3.7	109
CaH ₂ ⁽¹⁾	4.5	4.0	104
NaBH ₄ (35 wt% aqueous) ⁽²⁾	6.21	6.21	102
H ₃ BNH ₃	2.38	3.21	390-525

- * To run a 1 kW AFC for 8 hours
- 1.
- V.C.Y. Kong, et al., Int. J. Hydrogen Energy, 24, 665-75, 1999. S.C. Amendola, et al., Proceedings of the Power Sources Conference, 39th, 176-79, 2000.

Literature Search Results

- Approx. 1,450 articles related to borazine and borazine reactions of which about 50 or so related to the molecular modeling/ ab initio calculations
- About 300 articles involving borazane reactions including 50⁺ articles related to the molecular modeling/ ab initio calculations
- Only a dozen articles related to cyclotriborazane including one involving ab initio calculations (1977)
- Very few publications or studies related to the synthesis of cyclotriborazane or hydrogenation of borazine

Synthesis of AB Complex

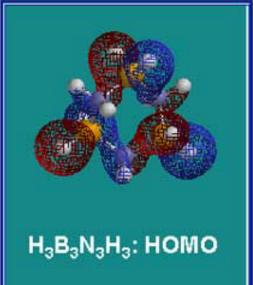
Indirect methods:

$LiBH_4 + NH_4CI - DEE \rightarrow LiCI + H_3BNH_3 + H_2$

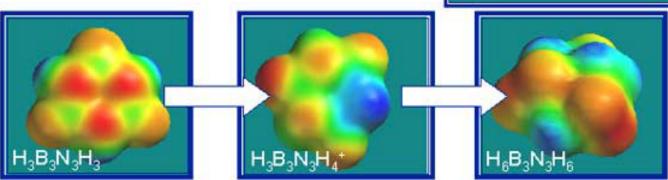
$2 \text{ LiBH}_4 + (\text{NH}_4)_2 \text{SO}_4 - \text{DEE} \rightarrow \text{Li}_2 \text{SO}_4 + 2 \text{ H}_3 \text{BNH}_3 + 2 \text{ H}_2$

S.G. Shore & R.W. Parry, J. Am. Chem. Soc., 77, 6084-5, 1955 S.G. Shore & K.W. Böddeker, Inorg. Chem. 3(6): 914-15, 1964 M.G. Hu, et al., J. Inorg. Nucl. Chem. 39(12): 2147-50, 1977

Direct method:

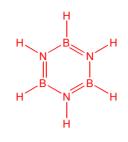

$B_2H_6 + 2 NH_3 \rightarrow 2 H_3BNH_3$

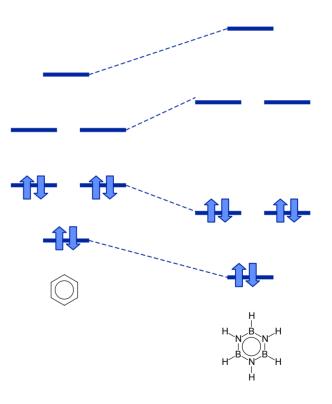
V.P. Sorokin, et al., Zh. Neorgan. Khim. 8, No. 1, 66; CA 58, 10962d, 1963 R.A. Geanangel & S.G. Shore, Prep. Inorg. React. 3: 123-238, 1966

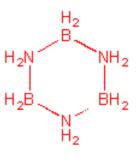


Molecular Orbital Calculations

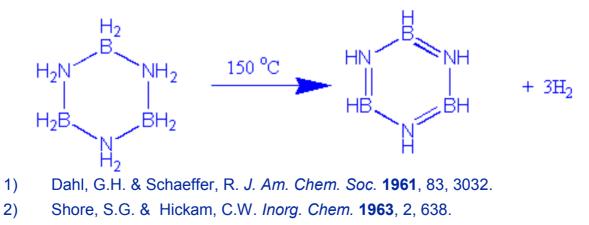
- Electrostatic potential for predicting H₂ bonding interactions
- Enthalpies of hydrogenation/dehyd.
- Potential energy surfaces
- Transition energies and structural information


Vibrational frequencies

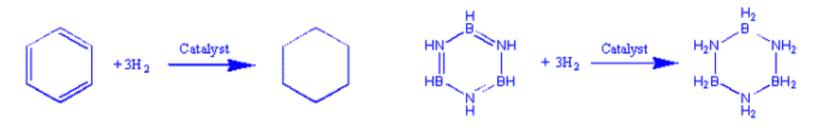

Electrostatic potential surfaces for the Isolated Molecules



- mp at -58°C & bp at 53°C) is stable in gas phase up to 500°C
- isoelectronic with benzene (inorganic benzene)
- Charge localisation on N makes borazine more susceptible to addition reactions and thus less stable than benzene



Cyclotriborazane


- ➤ Known synthesis routes: $2B_3N_3H_6.3HCI+6NaBH_4 \rightarrow 2B_3N_3H_{12}+6NaCI+3B_2H_6 \quad ^{(1)}$ $BH_2(NH_3)_2BH_4+NaC\equiv CH \rightarrow BH_2NH_2+NaBH_4+HC\equiv CH+NH_3 \quad ^{(2)}$
- > Crystalline (3)
- Does not react with water ⁽³⁾
- > Cylcotriborazane contains 6.47% H_2 by weight ⁽¹⁾

3) Boddeker, K.W., et al. J. Am. Chem. Soc. 1966, 88, 4396.

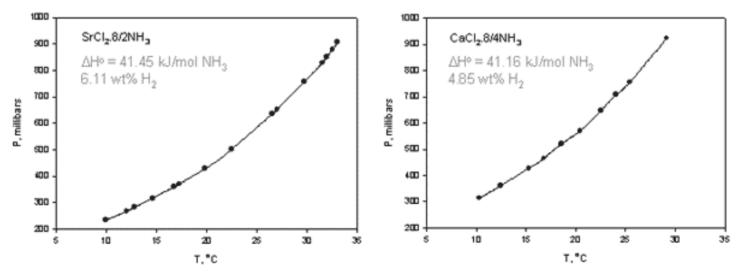
Borazine Hydrogenation

Catalyst	T (°C)	P (atm)
Ni Raney (L)	150	15
Pt (G)	200	11.25

- $> \Delta H_{hydrogenation} = -30.1 \text{ kcal/mol}^{(1)}$
- Cat. Activity: Rh>Ru>>Pt>>Pd>Ni>Co ⁽³⁾

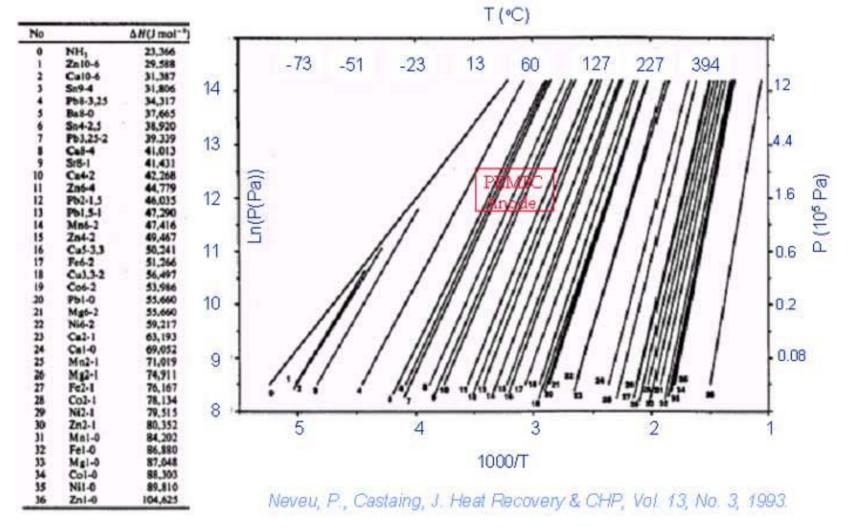
- $> \Delta H_{hydrogenation} = 28.1 \text{ kcal/mol}^{(1)}$
- Past attempts ⁽²⁾
- ✤ Ni at 70°C, 150°C & 200°C
- ✤ Pd at 40-50°C
- Unknown amorphous solid residue

- 1) Gaussian 03: x86-Win32-G03RevB.01 3-Mar-2003; DFT B3LYP 6-31G.
- 2) Wiberg, E.; Bolz, A. *Berichte der Deutschen Chemischen* **1940**, 73B, 209.
- 3) Greenfiled, H. Ann. N. Y. Acad. Sci. **1973**, 214, 233.


Advantageous Properties of Ammonia Complexes

- Can store large amounts of ammonia as high as the weight of the absorbing salt
- Many compounds and combinations are available
- Vapor pressure is independent of ammonia concentration, over very broad concentration ranges
- Ammonia complexes are solid state and thus not gravity sensitive

Metallic Salt Ammonia Complexes


- Solid-gas reaction pairs for chemical heat pumps ⁽¹⁾
- MgCl₂, CaCl₂, CaBr₂ & SrBr₂ can be used for NH₃ storage via heating to 200°C byTSA & CaCl₂-CaBr₂ mixed halides via evacuation to 10 kPa by PSA ⁽²⁾

- 1. Wentworth, W.E. TES Seminar, Stockholm, **1980**, 371.
- 2. Liu, C.Y. & Aika, K.-I. Chem. Lett. 2002, 798.

Equilibrium Lines for Various Chlorides/NH₃ Reactions

Conclusions

- Successful implementation of chemical hydrides for vehicular FC applications requires:
- Substantial reduction in their production costs
- Development of new and/or innovative synthesis routes for their preparation
- Alkali earth metal halides and/or mixed halides may provide a promising route via ammonia to reversibly store hydrogen for PEMFC applications