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Research Plan: 2002

Unified concept for both anode and cathode catalysts 
utilizing PGM-based bimetallic nanoparticles with 
“grape” structure (PGM skin with base metal core)

Choice of skin and core metals different for anode and       
cathode
PGM/base metal combinations selected based on existing 
electronic theory and synthesized in UHV

Pursue new synthetic chemistry to synthesize
nanoparticles with the “grape” structure 
Currently focusing on Re as metal core with Pt and Pd as PGM
Pt and Pd monolayers on Re(0001) model system
Re colloidal chemistry 

Optimization of AuPd anode catalyst for HT membranes     

Computational screening of non-PGM catalyst concepts 
using newly developed (under BES funding)
ab initio theory of the ORR
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Experimental Procedure
Pt3Co  ;     Pt3Ni 
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Conclusions

Surface composition is stable
between   0.0 < E< 1.2 V !

ORR activity remains the same
between   0.0 < E< 1.2 V !



Mechanism of  the ORR at metal electrodes
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E( eV)
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Rate limiting step in electrochemical reduction of O2 is       
1st electron transfer

O2 +  1 e- → (O2
-)sol Outer Sphere  (E0

‘=-0.3 V)
O2 +  1 e- → (O2

-)ads   Inner Sphere (E0
‘ + ∆Gad/F)

Addition of first electron needed to break O-O bond

O2
– adsorption strength  related to the electronic 

properties of the electrode material
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Pt 5d partially filled
Extra electron of O2

- lift 1π close to Pt 5d               
-----Stronger interaction

O2
- 2π above Pt 5d             

------charge transfer to Pt

Correlation Diagram of the Molecular Orbitals of (O2
-)-Pt  
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Correlation Diagram of Molecular Orbitals of (O2
-)-Au
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- 2π

Au 5dxy, O2
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Polarization effect

Au 5d  completely filled 
----No charge transfer between Pt and (O2

-)
Orbital with different symmetry do not interact
Weak Interaction due to polarization

----Au6s and (O2
-) π levels 



The Volcano Relation in ORR Kinetics

Θad is mostly OHad not (O2
-)ad

H2O = OHad + H+ + e-

or
O2

- + 2 H+ + e- = 2 OHad

Exponential term (O2
-) Pre-exponential term (1 - Θad)
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Pt at the Top of the Volcano

• Interaction of the electrode with O2
- requires partially filled d-orbitals with large radial extent

Group 1B, 2B, 3B etc. metals have closed d-shells 
Of Group VIII metals, d-orbitals in first row (3d9-n) 

do not have sufficient radial extent 
The 5d9-n orbitals are the best for forming long bonds

• Interaction of the electrode with OHad must be relatively weak of the Group VII metals, Pt has 
the weakest interaction with OHad



ORR: Pt(111)-Pd
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ORR: Re(0001)-Pd
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electronic modification
shifts frequency

preferential oxidation
of high frequency band 

two adsorption bands

Re(0001)-Pd 0.1 M HClO4 CO sat. sol.
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Research Plan: 2003-2004

Unified concept for both anode and cathode catalysts 
utilizing PGM-based bimetallic nanoparticles with 
“grape” structure (PGM skin with base metal core)
Choice of skin and core metals different for anode and  cathode
PGM/base metal combinations selected based on existing 
electronic theory and synthesized in UHV

Pursue new synthetic chemistry to synthesize
nanoparticles with the “grape” structure 
Continue focus on Re as metal core with Pt and Pd as PGM
Pt and Pd monolayers on Re(0001) as model systems
Begin evaluation of Re-rich supported Pt-Re catalyst for ORR

(if stable this catalyst could reduce Pt loading by a factor of 4) 

Optimization of AuPd anode catalyst for HT membranes        

Computational screening of non-PGM catalyst concepts 
using newly developed (under BES funding)
ab initio theory of the ORR
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