

... FROM CONCEPT TO PRODUCTION

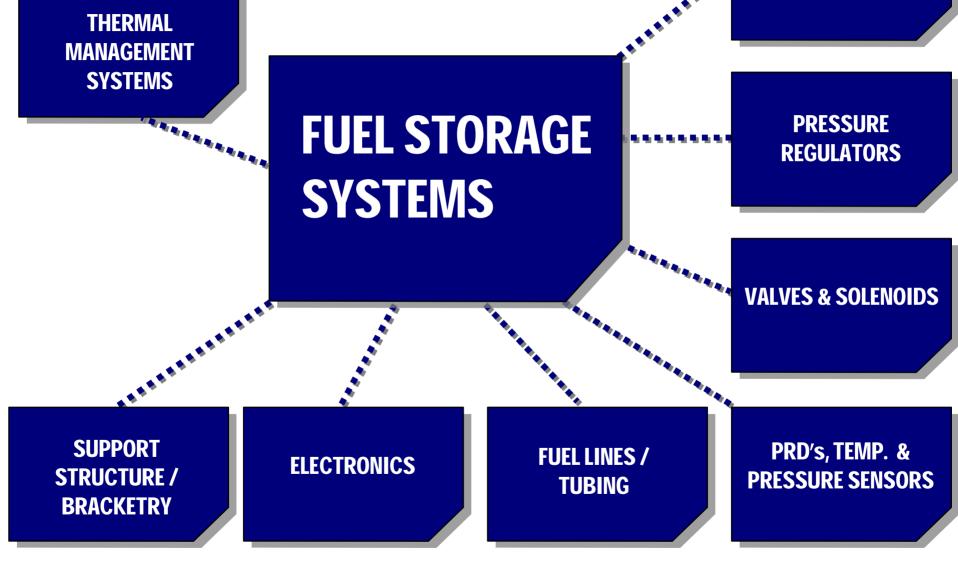
Manufacturing for the Hydrogen Economy

Status & Direction for Onboard Hydrogen Storage Andy Abele Quantum Fuel Systems Technologies Worldwide, Inc. July 2005

This presentation does not contain any proprietary or confidential information.

Hydrogen Storage – It's More Than a Tank

Hydrogen storage systems on H₂ vehicles must:


- Contain
- Control
- Regulate
- Monitor

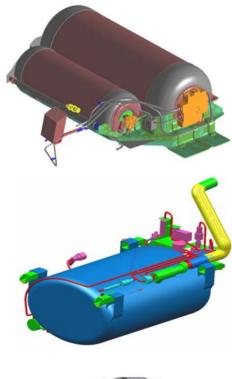
- Distribute
- Meter
- Refill
- Survive

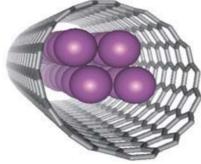
Integrated Fuel Storage Systems

Containment Vessel

Current Hydrogen Storage Options & Challenges

Compressed:


- Storage Capacity
- Safety Perception
- Cost


Liquid:

- Cost
- Storage Capacity
- Evaporation Losses
- High Energy Cost of Liquefaction
- Handling of Cryogenic Fuel

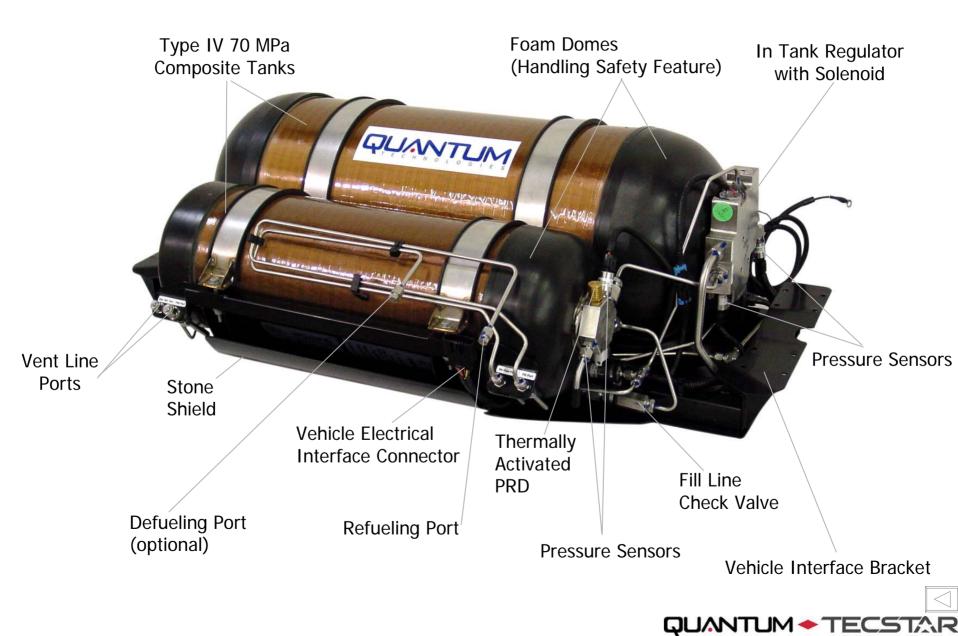
Solid-State:

- Maturity
- Weight
- Storage Capacity
- Containment
- Extraction

Present OEM Fuel Storage System Focus

Compressed

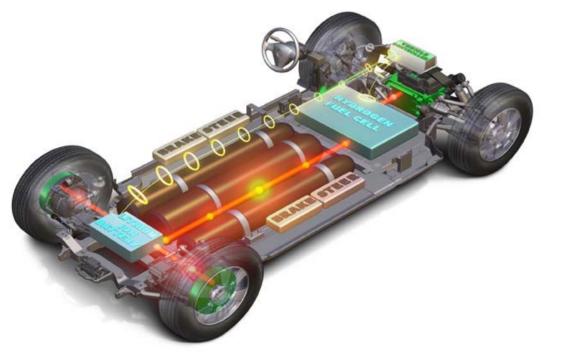
• Liquid


Liquid H₂ Storage Cost Drivers

Components

- Heat exchanger
- Cryogenic valves
- Valves and fittings
- Sensors (temperature, pressure, hydrogen)
- Materials
 - Vessel
 - Insulation
 - Plumbing
 - Seals
- Manufacturing
 - Production volumes

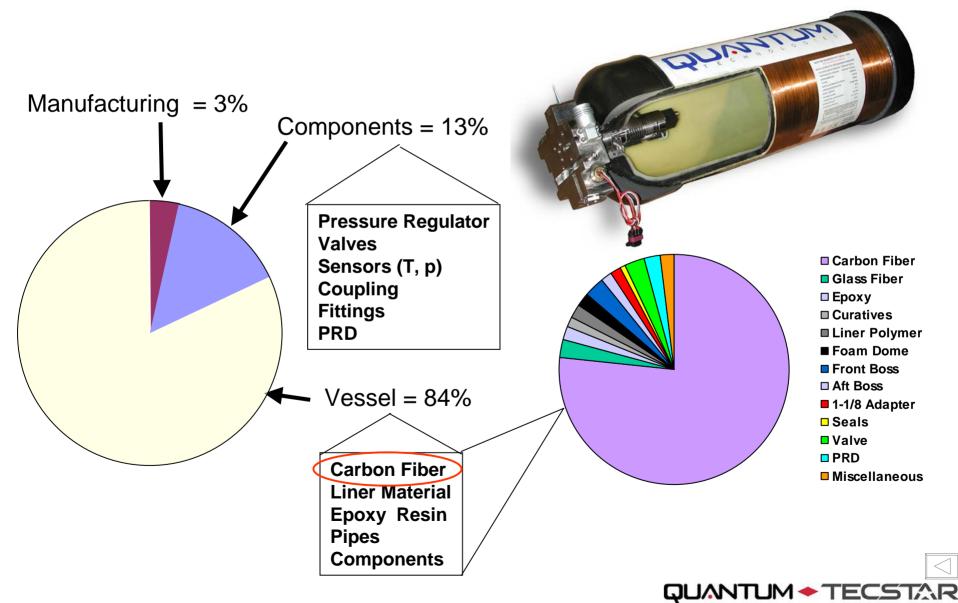
Compressed Hydrogen Fuel Storage System



GM Sequel

Storage Centric Design:

- Vehicle designed around fuel storage module
- Three longitudinally mounted 70 MPa compressed hydrogen Type IV tanks
- 8.0 kg usable hydrogen capacity



Compressed Hydrogen Storage System Costs

Approximately 65% of <u>System</u> Costs are Carbon Fiber

Parameter	Quantum <u>Current*</u>	2005	2010	2015
Usable Specific Energy (kW hr / kg)	1.3	1.5	2	3
Usable Energy Density (kW hr / L)	0.8	1.2	1.5	2.7
Cost (\$ / kW hr)	\$10-\$17	\$6	\$4	\$2
Cycle Life (Cycles, 1/4 tank to full)	15,000	500	1,000	1,500
Refueling Rate (kg H ₂ / min)	2.0	0.5	1.5	2.0

* Single 160L 70 MPa tank, 500k production volume, optimized carbon, health monitored storage system.

FreedomCAR

Composite Pressure Vessel Manufacturing

- Annual production ~ 750,000
 - All sizes, applications, and "types"
 - Highest growth rate for medical cylinders and paintball guns
- Manufacturing status
 - Computer-controlled, multi-spindle, highspeed filament winding
 - Liner production varies by type and manufacturer

Realistic Path for Compressed Hydrogen Technology -

• Storage Centric Vehicle Design

- Storage Centric Vehicle Design
- Single Longitudinal 160L 70MPa Storage Module

- Storage Centric Vehicle Design
- Single Longitudinal 160L 70MPa Storage Module
- On Tank Automatic Valve

- Storage Centric Vehicle Design
- Single Longitudinal 160L 70MPa Storage Module
- On Tank Automatic Valve
- External Low Cost Pressure Regulation Components

- Storage Centric Vehicle Design
- Single Longitudinal 160L 70MPa Storage Module
- On Tank Automatic Valve
- External Low Cost Pressure Regulation Components
- Health Monitored Tank (1.8 SP Burst Ratio)

- Storage Centric Vehicle Design
- Single Longitudinal 160L 70MPa Storage Module
- On Tank Automatic Valve
- External Low Cost Pressure Regulation Components
- Health Monitored Tank (1.8 SP Burst Ratio)
- Integrated Filament Winding w/ Fiber Placement

- Storage Centric Vehicle Design
- Single Longitudinal 160L 70MPa Storage Module
- On Tank Automatic Valve
- External Low Cost Pressure Regulation Components
- Health Monitored Tank (1.8 SP Burst Ratio)
- Integrated Filament Winding w/ Fiber Placement
- Revision of Codes & Standards enabling Fiber Placement

- Storage Centric Vehicle Design
- Single Longitudinal 160L 70MPa Storage Module
- On Tank Automatic Valve
- External Low Cost Pressure Regulation Components
- Health Monitored Tank (1.8 SP Burst Ratio)
- Integrated Filament Winding w/ Fiber Placement
- Revision of Codes & Standards enabling Fiber Placement
- Chilled Hydrogen Supply for Fast Fill

Estimated Performance –

Estimated Performance -

Usable Specific Energy (kW hr / kg)

> 2.0

Estimated Performance -

Usable Specific Energy (kW hr / kg)

Usable Energy Density (kW hr / L)

0.9

> 2.0

Estimated Performance -

Usable Specific Energy (kW hr / kg)

Usable Energy Density (kW hr / L)

> Cost (\$ / kW hr)

< \$10

> 2.0

0.9

Estimated Performance -

Usable Specific Energy	
(kW hr / kg)	

Usable Energy Density (kW hr / L)

> Cost (\$ / kW hr)

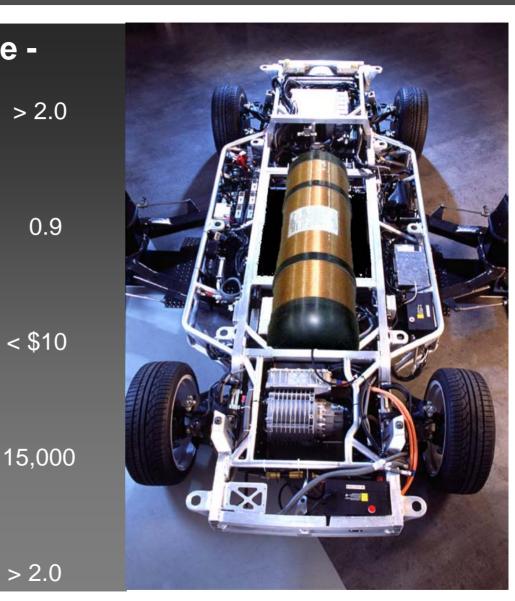
Cycle Life (Cycles, 1/4 tank to full) < \$10

> 2.0

0.9

15,000

Estimated Performance -

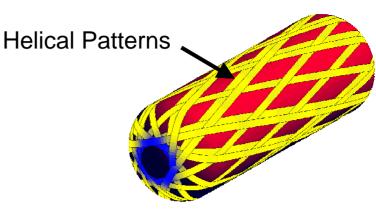

Usable Specific Energy	
1 07	
(kW hr / kg)	

Usable Energy Density (kW hr / L)

> Cost (\$ / kW hr)

Cycle Life (Cycles, 1/4 tank to full)

> Refueling Rate (kg H₂ / min)

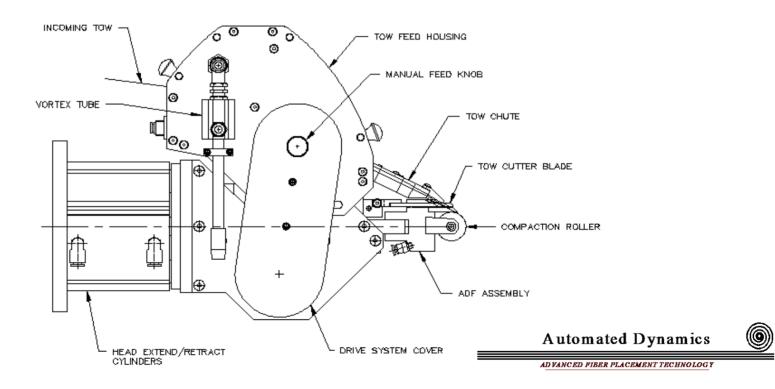


Integrated Filament Winding & Fiber Placement

Reduction in Fiber Usage -

- Eliminates need for "most" helical patterns on 70 MPa tank reducing carbon fiber usage by 20 – 30% depending on length & diameter.
- Long/Large diameter tanks benefit most.
- Enables use of thermal plastic matrix to improve damage tolerance & fatigue life.
- Improves placement & functionality of strain monitoring devices.

Automated Dynamics



AD VANCED FIBER PLACEMENT TECHNOLOGY

Fiber Placement Process

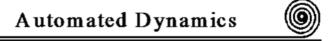


Aerospace Industry Fiber Placement

Mitsubishi Heavy Industries

6-axis gantry platform

8 tow thermoset delivery head



QUANTUM + TECSTAR

R&D work on Japanese SST (Super Sonic Transport)

Fiber Placement on Complex Surface

AD VANCED FIBER PLACEMENT TECHNOLOGY

Crossover Issues that Impact H₂ Storage

- Infrastructure development
 - Compressed vs. liquid
 - Centralized production/transport vs. distributed production
- Codes and standards
 - On-board vehicle storage vs. bulk transport vs. bulk (stationary) storage
 - U.S. vs. International
- Large scale stationary storage vs. on-board vehicle storage

... FROM CONCEPT TO PRODUCTION

QTWW.COM Nasdaq: QTWW

