

Fuel Cell Projects Kickoff Meeting

Nancy Garland Acting Fuel Cells Team Leader DOE Hydrogen Program nancy.garland@ee.doe.gov

> February 13-14, 2007 Washington, DC

Overview

Key Personnel
 Fuel Cell Program
 Key Targets

- ✓ Barriers
- ✓ Tasks
- ✓ Milestones
- ✓ Partners
- ✓ Budget
- ✓ Agenda

Managers, Project Officers, and Advisors

DOE HQ

Nancy Garland, *Acting Team Leader* Kathi Epping John Garbak Amy Manheim Jason Marcinkoski

DOE GO

Jill Gruber Dave Peterson Reg Tyler Lea Yancey <u>ANL</u> Tom Benjamin John Kopasz Walt Podolski

DOE Fuel Cell Program -Key Targets

Integrated Transportation Fuel Cell Power System (80 kW_e) Operating on Direct Hydrogen

- \$45/kW by 2010
- \$30/kW by 2015
- 5,000 hours durability by 2010 (80°C)

Other Key Targets

Distributed Energy (PEMFC)

- \$750/kW by 2011
- 40,000 hours durability by 2011
- 40% electrical efficiency

Auxiliary Power Units (SOFC)

- Specific power of 100 W/kg by 2010
- Power density of 100 W/L by 2010

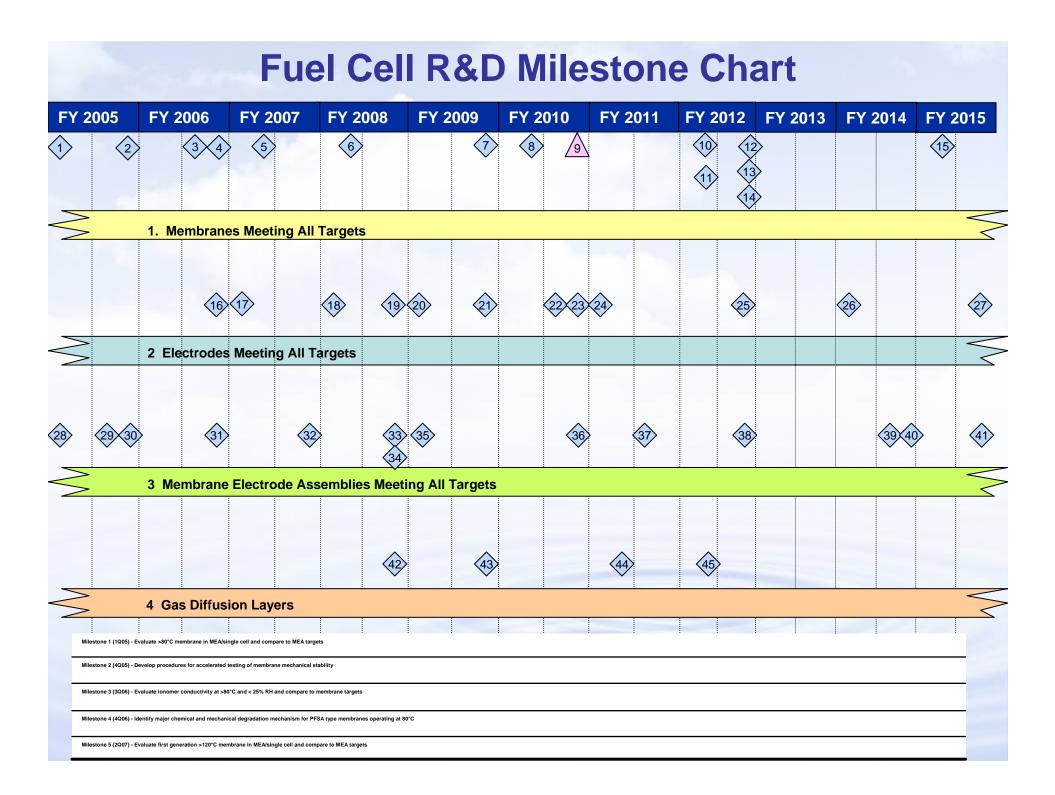
DELPHI

• Energy density of 1,000 W-h/L by 2010

80 kW Direct Hydrogen Fuel Cell System Status & Targets

Characteristic	Units	2003 Status	2005 Status	2010 Target	2015 Target
Cost ^a	\$/kW	200	110	45	30
Precious Metal Loading	g/kW (rated)	<2.0	1.1	0.3	0.2
Power Density	W/L	440	525	650	650
Lifetime (durability w/ cycling)	hours	N/A	~2,000	5000	5,000
Start-up Time to 50% of Rated Power at:					
- 20°C	S	120	20	30	30
+ 20°C	S	60	<10	5	5
Start-up and Shut Down Energy at: - 20°C	MJ	n/a	7.5	5	5
+ 20°C	MJ	n/a	n/a	1	1

^a estimate assuming high volume production of 500,000 units/year


Fuel Cell Barriers

- A. Durability
- **B.** Cost
- C. Performance
- D. Water Transport within the Stack
- E. System Thermal and Water Management
- F. Air Management
- G. Start-up and Shut-down Time and
 - **Energy/Transient Operation**

Technical Tasks

Technical Task	Description
Develop membranes that meet all targets	 Identify ionomers & fabricate membranes Test and characterize membranes
Develop electrodes that meet all targets	Improve catalysts & catalyst supportsOptimize electrode design & assembly
Develop MEAs that meet all targets	 Integrate components & expand operating range Test, analyze & characterize MEAs
Develop gas diffusion layers	 Improve GDL performance & durability Develop testing protocols and characterization methods
Develop bipolar plates	Improve performance & durability; decrease cost
Develop seals	Improve durability & performance
Develop balance-of-plant components	 Develop sensors & air management technologies Develop water & thermal management technologies
Develop stationary and other early market fuel cells	 Develop stationary FC systems, APUs, and fuel cells for portable power and off-road applications
Conduct analysis	 Conduct cost & tradeoff analyses; increase understanding of durability and freeze issues
Characterize and benchmark fuel cells	 Benchmark fuel cell technology; develop testing protocols Investigate impact of impurities on fuel cell performance
Develop innovative concepts	Improve BOP designs and FC performance

Research Partners

<u>Cell Hardware</u> Graftech, UTCFC, ORNL

Innovative FC Concepts ANL, Plug Power, CWRU, PNNL <u>Membranes</u> Arkema, LBNL, 3M, Plug Power, Colorado School of Mines, Penn State, Virginia Tech, Giner, U of Tenn., Case Western Reserve U (2), FuelCell Energy, Clemson U, GE Global Research, Arizona State U, U of Central Florida

<u>Catalysts</u>

U. of South Carolina, 3M, ANL, LANL, PNNL, Engelhard, Ion Power, UTCFC Impurities Clemson, U Conn., LANL Water Transport

RIT, CFD, Nuvera, LANL

Stationary Fuel Cell System Demonstrations

Intelligent Energy, Plug Power (2)

Portable/APU/Off road Cummins, Delphi, IdaTech, MTI, PolyFuel

Distributed Energy Systems IdaTech, Plug Power, UTC

Characterization/Analysis

ANL, Battelle, DTI, LANL, NIST, ORNL, TIAX

Fuel Cell Budget

	Funding (\$ in thousands)			
Budget Activity	FY 2006 Appropriation	FY 2007 Request	FY 2008 Request	
Fuel Cell Stack Component R&D	30,710	38,082	44,000	
Technology Validation	33,301	39,566	30,000	
Transportation fuel cell Systems	1,050	7,518	8,000	
Distributed Energy Fuel Cell Systems	939	7,419	7,700	
Fuel Processor R&D	637	4,056	3,000	

The Fiscal Year 2008 budget request for Hydrogen Technology is \$213.0 million, a \$17.2 million increase over the FY 2007 request.

Fuel Cell Projects Kickoff Meeting Agenda

Tuesday, I	February 13, 2007	
9:00	Welcome and Program Overview	Pat Davis Nancy Garland
Membrane	es	
9:20	Membranes and MEA's for Dry, Hot Operating Conditions	S. Hamrock, 3M
9:40	New Polyelectrolyte Materials for High Temperature Fuel Cells	J. Kerr, LBNL
10:00	The Design of Novel Materials Consisting of a Semi- Interpenetrating Network of PVDF and a Sulfonated Polyelectrolyte	M. Foure, Arkema
10:20	Break	
Water Tran	nsport Studies	
10:50	Visualization of Fuel Cell Water Transport and Performance Characterization under Freezing Conditions	S. Kandlikar, RIT
11:10	Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, testing, and Design Characterization	V. Cole, CFD Research
11:30	Subfreezing Start/Stop Protocol for an Advanced Metallic Open-Flow field Fuel Cell Stack	J. Cross, Nuvera
11:50	Water Transport Within the Stack: Water Transport Exploratory Studies	R. Borup, LANL
12:10	Lunch	

Program Agenda – Day 1 Afternoon

Catalysts	& Supports	
1:30	Advanced Cathode Catalysts and Supports for PEM Fuel Cells	M. Debe, 3M
1:50	Highly Dispersed Alloy Cathode Catalyst for Durability	T. Jarvi, UTCFC
2:10	Advanced Cathode Catalysts	P. Zelenay, LANL
2:30	Non-Platinum Cathode Electrocatalyst based on Bimetallic Base Metal-Noble Metal Systems	D. Myers, ANL
2:50	Development of Alternative and Durable High Performance Cathode Supports for PEM Fuel Cells	Y. Wang, PNNL
3:10	Break	
nnovative	Fuel Cell Concepts	
3:40	Aligned Carbon Nanotube-Based MEA and PEMFC	D-J Liu, ANL
4:00	Light Weight Low Cost PEM Fuel Cell Stacks	J. Wainright, CWRU
4:20	Adaptive Stack with Subdivided Cells for Improved Stability, Reliability, and Durability Under Automotive Load Cycle	B. Du, Plug Power
4:40	Low-Cost Manufacturable Microchannel Systems for Passive PEM Water Management	S. Stenkamp, PNNL

Program Agenda – Day 2

Wednesda	y, February 14, 2007	
Cell Hardy	vare	
8:30	Next Generation Bipolar Plates for Automotive PEM Fuel Cells	O. Adrianowycz, GrafTech
8:50	Nitrided Metallic Bipolar Plates	P. Tortorelli, ORNL
9:10	Low Cost Durable Seals	G. Roberts, UTC Power
Reporting	Requirements	
9:30	Reporting Requirements	Golden Field Office Project Officers
9:40	Break	
Impurity S	tudies	
10:00	Effects of Impurities on Fuel Cell Performance and Durability	T. Molter, U. Conn.
10:20	Effects of Impurities on Fuel Cell Performance and Durability	J. Goodwin, Clemson
10:40	Effects of Impurities on Fuel Cell Performance and Durability F. Garzon, LANL	
Demonstr	ations	
11:00	International Stationary Fuel Cell Demonstration	J. Vogel, Plug Power
11:20	Development and Demonstration of a New Generation High Efficiency 2 kW Combined Heat and Power Unit	K. Durai-Swamy, Intelligent Energy
11:40	Intergovernmental Stationary Fuel Cell System Demonstration	M. Parsons, Plug Power