Bacterial Cellulose Membranes

Hugh O'Neill^{1,2}, Barbara R. Evans¹ and Jonathan Woodward¹

Chemical Sciences Division, Oak Ridge National Laboratory.¹ Dept. of Biochemistry, Cellular and Molecular Biology, University of Tennessee.²

Presented at:

2002 Merit Review and Peer Evaluation DOE Fuel Cells for Transportation National Laboratory R&D Golden, Colorado. May 8-10, 2002.

Objective

Development of a thermostable inexpensive proton conductive polymer membrane suitable for use in a polymer electrolyte membrane fuel cell.

Principle Requirements

(1) Thermal stability (operating at $>120^{\circ}C$)

- Facilitates stack and system management
- Increases CO tolerance of catalyst layer
- Improves electrode kinetics
- minimizes catalyst cost

(2) Proton conductance

 Conditions conducive to proton conductance from the anode to the cathode through the polymeric medium must be maintained or increased

Background

Laboratory grown bacterial cellulose

Bacterial Cellulose MEA

Palladium Deposited by Bacterial Cellulose

Cultivation of Bacterial Cellulose

Processed Bacterial Cellulose

SEM micrographs of freeze-dried Bacterial Cellulose

TGA analysis Profiles of Bacterial Cellulose and Nafion 117®

H₂ crossover characteristics of Bacterial Cellulose and Nafion 117[®]

Project Timeline

Milestone FY 2002

• Synthesis of proton conductive membrane for PEM fuel cell by chemical modification of bacterial cellulose.

Metric

•A membrane with an operating temperature $\geq 130^{\circ}$ C (based on the stability of the native membrane) and ion-exchange capacity of 1 mequiv/g.

Approach

Chemical Modification of Bacterial Cellulose

Accomplishments

Membrane characteristics		Native	Cellulose	Nafion $117^{\mathbb{R}}$
		cellulose	phosphate	
Physical properties	Dry membrane thickness (mm)	0.010	0.023	0.199
	Wet membrane thickness (mm) ¹	0.032	0.081	0.225
	H_2O content / g dry membrane $(g/g)^1$	3.47	3.16	0.31
	Thermal stability (°C)	130	245	<90
	Ion exchange capacity (mequiv/g)	0	1.3	0.9
	H_2 crossover (nmol.mil/h.cm ² .atm) ²	n.d.	267.2	2039.4
Mechanical stability	Resistance to crease/crack: dry	Yes	No	Yes
	hydrated	Yes	Yes	Yes
	Resistance to tearing: dry	No	No	Yes
	hydrated	Yes	Yes	Yes
	Resistance to gas pressure (dry)	n.d.	30 psi	>50 psi
Chemical stability	Acid stability (% weight loss) ³	12	39	2.5

¹Determined after heating to 99° C for 2.5 hours in H₂O ²Measured at 20 psi H₂ (100%) and 25° C ³Determined after incubation in 0.5M H₂SO₄ at 95° C for 45 hours

Highlights in Relation to DOE Technical Targets for Fuel Cell Membrane Component

Component	Requirement	Current Status	
Cost	\$5/kW	n.d.	
Stability w/RH 20-100%:(a)	$< 2 \mathrm{mV}$	245°C	
(b)	<10% swelling	316%	
H ₂ crossover	$< 1 \mathrm{m}\mathrm{A/cm}^2$	$18.82 \ \mu A/cm^2$	
Area-specific resistance	0.1 ohm-cm^2	n.d.	

Responses to Comments from FY2001

- Mechanical stability
- Chemical stability
- Lack of collaborations

Strategy to Produce Cellulose with Increased Acid Stability

Plans/Future Milestones

FY2002

- Complete characterization of phosphate membranes. Other methods attempted still need to be revisited and evaluated. *FY2003*
- Characterization of membrane properties in MEA. *Future work*
- Bacterial polymerization of activated glucose monomers
 - Projected advantages:
 - Greater control over the distribution of acid groups
 - Possibility of producing membranes with novel tailored properties

Acknowledgements

This work is supported by the Office of Transportation Technologies Fuel Cells for Transportation Program, U.S. Department of Energy.

Oak Ridge National Laboratory is managed by UT-Battelle, LLC for the U.S. Dept. of Energy under contract DE-AC05-000R22725.

