

EERE Fuel Cell Technologies Program

Sunita Satyapal

Acting Program Manager

U.S. Department of Energy Fuel Cell Technologies Program

Fuel Cell Project Kickoff September 30, 2009

Fuel Cells: Addressing Energy Challenges

Energy Efficiency and Resource Diversity

→ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

Greenhouse Gas Emissions and Air Pollution:

→ Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources.

Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles

The largest markets for fuel cells today are in stationary power, portable power, auxiliary power units, and forklifts.

~18,000 fuel cells were shipped in 2008 (> 50% increase over 2007).

Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts.

Production & Delivery of Hydrogen

In the U.S., there are currently:

- ~9 million metric tons of H₂ produced annually
- > **1200 miles** of H₂ pipelines

Fuel Cells for Transportation

In the U.S., there are currently:

- > 200 fuel cell vehicles
- > 20 fuel cell buses
- ~ 60 fueling stations

Several
manufacturers—
including Toyota,
Honda, Hyundai,
Daimler, Proterra
(buses), and GM—
have announced
plans to
commercialize
vehicles in the
next few years.

Program Goals and Barriers

The Program's overarching goal is to enable the widespread commercialization of hydrogen and fuel cell technologies.

Technology

Economic & Institutional

Barriers

Fuel Cell Cost & Durability

Status: Targets:

Stationary Systems: ~\$3.500/kW \$750/kW

> 20,000 hr 40,000-hr durability

Vehicles: \$61/kW \$30/kW

> 5,000-hr durability 2.000 hr

Cost of H₂ Production & Delivery

(cost is untaxed and delivered)

Status: Targets:

\$3 - \$12/gge \$2 - 3/ggeProduction: Delivery: \$2.30 - 3.30/gge <\$1/gge

gge = gallon gasoline equivalent

Capacity & Cost of H₂ Storage

(>300 mile range) Status: **Targets:** 15 - 50 g/L70 g/L Volumetric Gravimetric 3.0 - 6.5 wt% 7.5 wt% Cost \$15 - 23/kWh \$2/kWh

Technology Validation:

Technologies must be demonstrated under real-world conditions.

E.a., 140 vehicles & 20 stations demonstrated with GM, Ford, Daimler/ Chrysler, Hyundai > 2.2 million miles, 90,000 kg dispensed: 53-58% efficiency: up to 254 mile range demonstrated.

COMPANY	AWARD
Delphi Automotive	\$2.4 M
FedEx	\$1.3 M
GENCO	\$6.1 M
Jadoo Power	\$1.8 M
MTI MicroFuel Cells	\$2.4 M
Nuvera Fuel Cells	\$1.1 M
Plug Power	\$3.4 M
Plug Power	\$2.7 M
PolyFuel	\$2.5 M
ReliOn (inc. AT&T)	\$8.6 M
Sprint Comm.	\$7.3 M
Sysco of Houston	\$1.2 M

Market Transformation

Recovery Act enables up to 1,000 fuel cell systems for early markets (>\$40 M)

Safety, Codes & Standards Development

Domestic Manufacturing & Supplier Base

Public Awareness & Acceptance

Investment in Delivery Infrastructure

NOTE: All costs are projected to high-volume manufacturing and production.

Interest in fuel cells and hydrogen is global, with more than \$1 billion in public investment in RD&D annually, and 17 members of the International Partnership for the Hydrogen Economy (IPHE).

We are tracking the commercial success of technologies developed by the Program.

Accelerating Commercialization:

An increasing number of FCT-funded technologies have been entering the market.

PATENTS resulting from FCT-funded R&D:

118 patents reviewed:

- 60 fuel cell patents
- 37 hydrogen production/delivery patents
- 21 storage patents

Results will be documented in a report by Pacific Northwest National Lab:

"Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program"

2005

BOP

\$36/kW

Stack

\$69/kW

Assembly \$1/kW

Stack

\$36/kW

2000

Assembly \$3/kW

We've reduced the cost of fuel cells by more than 75% since 2002. \$300/kW \$275/kW \$200/kW TARGETS → Current ICE \$108/kW \$94/kW \$100/kW cost \$61/kW* \$73/kW \$30/kW \$45/kW

2010

2015

*Preliminary estimate

As stack costs are

plant components

reduced, balance-of-

are responsible for a larger % of costs.

From 2007 to 2008, key cost reductions were made by:

BOP

\$36/kW

- Reducing platinum group metal content from 0.6 to 0.35 g/kW
- Increasing power density from 583 to 715 mW/cm²
 - → These advances resulted in a \$12.40/kW cost reduction.
- 2008 cost projection validated by an independent panel, which found \$60
 – 80/kW to be a "valid estimate"
- Cost estimates are based on projection to high-volume manufacturing (500,000 units/year); 80 kW PEM fuel cell. Breakdown by DTI, Inc.

Key Improvements enabled by using novel organic crystalline whisker catalyst supports and Pt-alloy whiskerettes ~ 5 billion whiskers/cm² Whiskers are ~ 25 X 50 X 1000 nm

Whiskerettes: 6 nm x 20 nm

Fuel Cell R&D — Progress

We've greatly increased durability—including more than doubling the demonstrated durability of transportation fuel cells.

Demonstrated >7,300-hour durability -

This exceeds our target for MEA durability, in single-cell testing—and has the potential to meet the 2010 target for MEAs in a fuel cell system.

Collaborations

Federal Agencies

- · DOC • EPA NASA
- DOD GSA
- DOEd •USDA • DOI

•NSF

•USPS

- DOT • DHS
- Interagency coordination through stafflevel Interagency Working Group (meets monthly)
- Assistant Secretary-level Interagency Task Force mandated by EPACT 2005.

Universities

~ 50 projects with 40 universities

International

- IEA Implementing agreements 25 countries
- International Partnership for the Hydrogen Economy -16 countries 30 projects

EERE Fuel Cell Technologies Program

- Applied RD&D
- Efforts to Overcome Non-Technical Barriers
- Internal Collaboration with FE, NE, BES

Industry Partnerships & Stakeholder Assn's.

- FreedomCAR and Fuel Partnership
- · National Hydrogen Association
- U. S. Fuel Cell Council
- Hydrogen Utility Group
- ~ 65 projects with 50 companies

State & Regional **Partnerships**

- · California Fuel Cell Partnership
- · California Stationary Fuel Cell Collaborative
- SC H₂ & Fuel Cell Alliance
- Upper Midwest Hydrogen Initiative
- Ohio Fuel Coalition
- Connecticut Center for Advanced **Technology**

NREL (\$23M) P&D, S, FC, A, SC&S, TV

ANL (\$15M) A, FC, P&D

LANL (\$15M) S, FC, SC&S

SNL (\$8M) P&D, S, SC&S

LBNL (\$4M) FC, A

PNNL (\$7M) P&D, S, FC, A

Other Labs

- JPL
- NIST
- NETL
- INL

BNL (\$3M) S, FC

LLNL (\$4M) P&D, S

ORNL (\$6M) P&D, S, FC, A

SRNL (\$4M) S, P&D

P&D = Production & Delivery; S = Storage; FC = Fuel Cells; A = Analysis; SC&S = Safety, Codes & Standards; TV = Technology Validation

U.S. PARTNERSHIPS

- FreedomCAR & Fuel Partnership: Ford, GM, Chrysler, BP, Chevron, ConocoPhillips, ExxonMobil, Shell, Southern California Edison, DTE Energy
- Hydrogen Utility Group: Xcel Energy, Sempra, DTE, Entergy, New York Power Authority, Sacramento Municipal Utility District, Nebraska Public Power Authority, Southern Cal Edison, Arizona Public Service Company, Southern Company, Connexus Energy, etc.
- State/Local Governments: California Fuel Cell Partnership, California Stationary Fuel Cell Collaborative
- Industry Associations: US Fuel Cell Council, National Hydrogen Association

INTERNATIONAL PARTNERSHIPS

International Partnership for the Hydrogen Economy—
partnership among 16 countries and the European Commission

International Energy Agency — Implementing Agreements

- Hydrogen Implementing Agreement 21 countries and the European Commission
- Advanced Fuel Cells Implementing Agreement 19 countries

Program activities are an integrated, comprehensive effort addressing the full range of technical, institutional, and economic barriers.

*Crosscutting activities include Safety, Codes & Standards, Education, Systems Analysis, Manufacturing R&D, and Market Transformation.

** FY10 Senate mark is \$190M for Hydrogen Technologies; FY10 House mark is \$153M.

28 innovative R&D projects kicked off today, \$113M in DOE funding

New projects will:

- Develop improved fuel cell catalysts
- Enhance fuel cell durability
- Characterize transport phenomena
- Optimize fuel cells for early market applications
- Develop innovative concepts leading to a new generation of fuel cell technology

55 participating organizations:

3M Argonno

Argonne National Lab

Arkema

Ballard Power Systems

Brookhaven National Lab

Brown University

Case Western Reserve University

Colorado School of Mines

Dalhousie University

dpoint Technologies

Engineered Fibers Technology

Gas Technology Institute

General Motors Corporation

Georgia Institute of Technology

Giner Electrochemical Systems

Hawaii Natural Energy Institute

IBIS Associates

Illinois Institute of Technology Indiana University – Purdue University Indianapolis

Ion Power

Jet Propulsion Lab

Johnson Matthey Fuel Cells

Lawrence Berkeley National Lab

Los Alamos National Lab

Massachusetts Institute of Technology

Michigan Technological University

National Renewable Energy Laboratory

Northeastern University

Nuvera Fuel Cells

Oak Ridge National Lab

Orion Industries

Penn State University

Plug Power

PolyFuel

QuantumSphere

Queen's University

Sandia National Lab

Southern Illinois University

Stanford University

SUNY Albany

SUNY Stony Brook

Tech-Etch Inc

TreadStone Technologies

United Technologies Research Center

University of CA Riverside

University of Connecticut

University of Hawaii

University of New Mexico

University of South Carolina

University of Texas Austin

University of Wisconsin Madison

UTC Power

Versa Power Systems

Virginia Tech

W. L. Gore & Associates

Key Program Documents

Fuel Cell Program Plan

Outlines a coordinated plan for fuel cell activities in the Department of Energy

- → Replacement for current Posture Plan
- → To be released in late 2009

Annual Merit Review & Peer Evaluation Report

Summarizes the comments of the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting

→ Next edition to be published in Fall 2009

www.hydrogen.energy.gov/annual review08 report.html

Annual Progress Report

Summarizes activities and accomplishments within the Program over the preceding year, with reports on individual projects

→ Next edition to be published in Fall 2009

www.hydrogen.energy.gov/annual progress.html

Annual Merit Review Proceedings

Includes downloadable versions of all presentations at the Annual Merit Review

→ Latest edition released June 2009

www.hydrogen.energy.gov/annual review09 proceedings.html

Next Annual Review: June 7-11, 2010 Washington, D.C.

Hydrogen Production and Delivery High-Temperature Tearns; hersical Direktor: Dit Februaries

2008 Annual Merit Review Proceedings

DOE

Freignag Record

Hydrogen Program

Thank you

We look forward to your progress!