

### Hydrogen from Coal

**Edward Schmetz** 

### Office of Sequestration, Hydrogen and Clean Coal Fuels U.S. Department of Energy

DOE Workshop on Hydrogen Separations and Purification Technologies September 8, 2004



### **Presentation Outline**

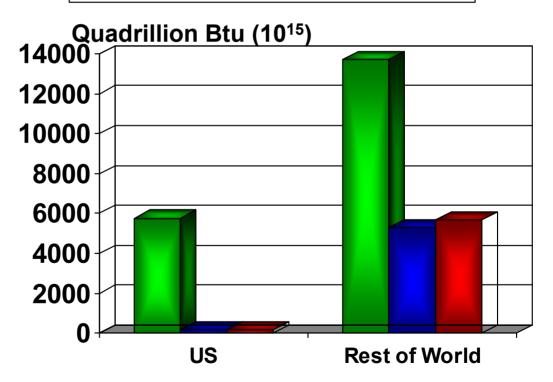
- Hydrogen Initiatives
- Hydrogen from Coal Central Production Goal
- Why Coal
- Why Hydrogen Separation Membranes
- Coal-based Synthesis Gas Characteristics
- Technical Barriers
- Targets
- Future Plans

# The Hydrogen from Coal Program Supports the Hydrogen Fuel Initiative and FutureGen



- The Hydrogen Fuel Initiative is a \$1.2 billion RD&D program to develop hydrogen production, storage, delivery, and utilization technologies
- FutureGen is an integrated sequestration and hydrogen research initiative to test advanced technologies in a world-scale co-production plant
- Hydrogen from Coal Program will coordinate with associated DOE programs in Gasification, Fuel Cells, Turbines, and Carbon Capture & Sequestration

# Production Goal for Hydrogen from Coal


Central Pathway: By 2015, demonstrate a 60 percent efficient,<sup>(a)</sup> near-zero emissions, coal-fueled hydrogen and power co-production facility that reduces the cost of hydrogen by 25 percent compared to current coal-based technology.

# Why Hydrogen From Coal?

- Huge U.S. coal reserves
- Hydrogen can be produced cleanly from coal
- Coal can provide large, affordable quantities of H<sub>2</sub>
- Sequestration technology will remove CO<sub>2</sub>
- Bridge to renewable
  H<sub>2</sub> production

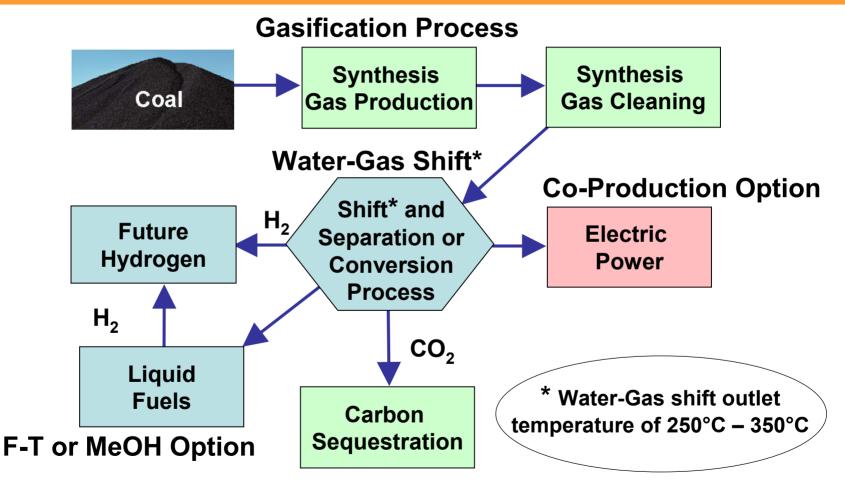
#### Fossil Energy Reserves (a)

Coal Nat Gas Petroleum



(a) Proved oil and gas reserves, and recoverable coal reserves

### Summary of Hydrogen from Coal Cases


|                                      | Case 1       | Case 2      | Case 3      |
|--------------------------------------|--------------|-------------|-------------|
| Gasifier*                            | Conventional | Advanced    | Advanced    |
| Separation System                    | PSA          | Membrane    | Membrane    |
| Carbon Sequestration                 | Yes (87%)    | Yes (100%)  | Yes (100%)  |
| Hydrogen Production (MMSCFD)         | 119          | 158         | 153         |
| Coal (TPD) as received               | 3000         | 3000        | 6000        |
| Efficiency (%) (HHV basis)           | 59           | 75.5        | 59          |
| Excess Power (MW)                    | 26.9         | 25          | 417         |
| Capital (\$MM)                       | 417          | 425         | 950         |
| RSP of Hydrogen (\$/MMBtu) / (\$/kg) | 8.18 / 1.10  | 5.89 / 0.79 | 3.98 / 0.54 |

\* Conventional gasification technology assumes Texaco quench gasification; advanced gasification technology assumes advanced E-gas gasification.

- RD&D is estimated to reduce the cost of hydrogen from coal by 25%.
- Co-production of hydrogen and electricity (5.36 ¢/kWh) can further reduce the cost of hydrogen production by 32%.

Source: Hydrogen from Coal, Mitretek Technical Paper MTR 2002-31. July 2002.

# Hydrogen is Cleanly Produced from Coal through Gasification



IGCC Plants provide the option for efficient hydrogen production with the ability to co-produce electricity and clean liquid fuels.

### Synthesis Gas Properties Derived from Coal in comparison to Natural Gas

- Coal-produced synthesis gas has more contaminants (S, Hg, NH3, HCI) prior to clean-up
- Synthesis gas from coal is CO-rich, and from natural gas is H2-rich
- System integration of H2 separation technology into coal gasification facility is more complex
- Goal is to combine/eliminate process steps such as synthesis gas cleaning, WGS, and separation into one membrane – coal requires a more robust process than natural gas

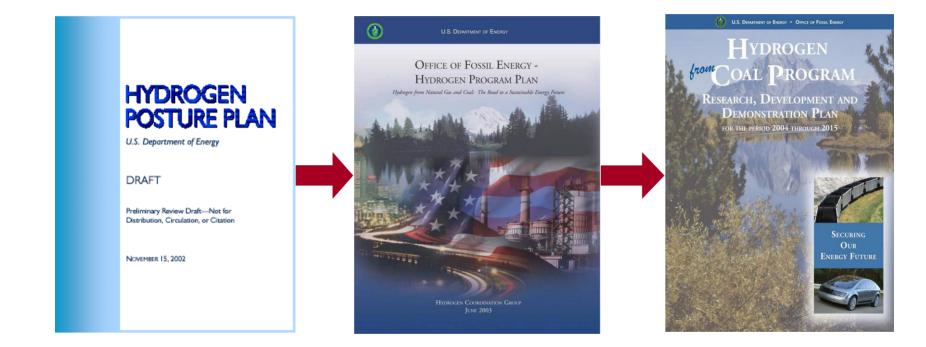
### **Membrane Systems Barriers**

- High cost
- Low selectivity
- Low flux rates
- Do not operate at optimal process temperatures
- Intolerance to impurities in hydrogen from coal
- Undesired atomic rearrangement

- Scale-up required
- Thermal cycling
- Lack of seal technology and materials
- Defects during fabrication
- Lack of demonstration of novel technologies
- Complex process designs

From Office of Fossil Energy Hydrogen from Coal RD&D Plan, June 10, 2004 - DRAFT

### Hydrogen Separation – Technical Targets


| Performance Criteria                                                                              | 2007 Target | 2010 Target | 2015 Target          |
|---------------------------------------------------------------------------------------------------|-------------|-------------|----------------------|
| Flux scf/h/ft2 @100 psi ∆P H <sub>2</sub><br>partial pressure & 50 psia<br>permeate side pressure | 100         | 200         | 300                  |
| Operating Temp, °C                                                                                | 400-700     | 300-600     | 250-500              |
| S tolerance                                                                                       | Yes         | Yes         | Yes                  |
| Cost, \$/ft <sup>2</sup>                                                                          | 150         | 100         | <100                 |
| WGS Activity                                                                                      | Yes         | Yes         | Yes                  |
| ∆P Operating Capability, system<br>pressure, psi                                                  | 100         | Up to 400   | Up to 800 to<br>1000 |
| CO tolerance                                                                                      | Yes         | Yes         | Yes                  |
| Hydrogen Purity                                                                                   | 95%         | 99.5%       | 99.99%               |
| Stability/Durability (years)                                                                      | 3           | 7           | >10                  |

From Office of Fossil Energy Hydrogen from Coal RD&D Plan, June 10, 2004 - DRAFT

### Future Plans - Hydrogen from Coal RD&D Program

- Continue research on advanced membranes for hydrogen separations
- Initiate co-funding research with EERE on hydrogen membrane separations
- Initiate pre-engineering scale module development
- Systems analysis
  - Expand analysis to include a wider range of hydrogen from coal production pathways based on promising research results
  - Look at other promising membrane systems
- Initiate study of other separation systems

### FE Hydrogen Program Plan and Hydrogen from Coal RD&D Plan



### Hydrogen from Coal – Clean, Secure, Affordable Energy for the Future

http://fossil.energy.gov/programs/fuels/