# Overview of Storage Development DOE Hydrogen Program

Safe, efficient and cost-effective storage is a key element in the development of hydrogen as an energy carrier

> George Thomas Sandia National Laboratories Livermore, CA

Hydrogen Program Review San Ramon, CA May 9-11, 2000

US DOE Hydrogen Program 2000 Annual Review May 9-11, 2000 San Ramon, California Sandia National Laboratories Livermore, California



# Hydrogen storage requires something more than a can or a bucket

Hydrogen has the highest mass energy density of any fuel: 120 MJ/kg (LHV) 144 MJ/kg (HHV)

#### however

At ambient conditions (300 K, 1 atm.): the energy content of 1 liter of H2 is only 10.7 kJ, three orders of magnitude too low for practical applications.

Issues:

- 1. What are the options available for storage?
- 2. What are the theoretical limits to storage density and how close can we come?
- 3. How do we organize a development program to achieve adequate stored energy in an efficient, safe and cost-effective manner?



#### Mass energy densities for various fuels

|            |  | Fuel     | Hydrogen<br>weight<br>fraction | Ambient state             | Mass energy<br>density<br>(MJ/kg) |
|------------|--|----------|--------------------------------|---------------------------|-----------------------------------|
| r vt       |  | Hydrogen | 1                              | Gas                       | 120                               |
| ulai       |  | Methane  | 0.25                           | Gas                       | 50 (43) <sup>2</sup>              |
| olec       |  | Ethane   | 0.2                            | Gas                       | 47.5                              |
| Ĕ          |  | Propane  | 0.18                           | Gas (liquid) <sup>1</sup> | 46.4                              |
| sing       |  | Gasoline | 0.16                           | Liquid                    | 44.4                              |
| rea:       |  | Ethanol  | 0.13                           | Liquid                    | 26.8                              |
| <b>JCI</b> |  | Methanol | 0.12                           | Liquid                    | 19.9                              |

(1) A gas at room temperature, but normally stored as a liquid at moderate pressure.(2)The larger values are for pure methane. The values in parantheses are for a "typical" Natural Gas.

US DOE Hydrogen Program 2000 Annual Review May 9-11, 2000 San Ramon, California



# Maximum energy density is achieved in liquid state

| Fuel     | Hydrogen<br>weight<br>fraction | Ambient<br>state          | Liquid<br>volumetric<br>energy<br>density<br>(MJ/liter) | Hydrogen<br>volumetric<br>energy<br>density<br>in liquid<br>(MJ/liter) |
|----------|--------------------------------|---------------------------|---------------------------------------------------------|------------------------------------------------------------------------|
| Hydrogen | 1                              | Gas                       | $8.4 - 10.4^3$                                          | $8.4 - 10.4^3$                                                         |
| Methane  | 0.25                           | Gas                       | 21 (17.8) <sup>2</sup>                                  | 12.6 (10.8) <sup>2</sup>                                               |
| Ethane   | 0.2                            | Gas                       | 23.7                                                    | 12                                                                     |
| Propane  | 0.18                           | Gas (liquid) <sup>1</sup> | 22.8                                                    | 10.6                                                                   |
| Gasoline | 0.16                           | Liquid                    | 31.1                                                    | 13.2                                                                   |
| Ethanol  | 0.13                           | Liquid                    | 21.2                                                    | 12.3                                                                   |
| Methanol | 0.12                           | Liquid                    | 15.8                                                    | 11.9                                                                   |

(1)A gas at room temperature, but normally stored as a liquid at moderate pressure.(2)The larger values are for pure methane. The values in parantheses are for a "typical" Natural Gas.

(3)The higher value refers to hydrogen density at the triple point.

US DOE Hydrogen Program 2000 Annual Review May 9-11, 2000 San Ramon, California



#### Hydrogen energy content in liquid fuels

| Fuel     | Hydrogen<br>weight<br>fraction | Ambient<br>state          | Liquid<br>volumetric<br>energy<br>density<br>(MJ/liter) | Hydrogen<br>volumetric<br>energy<br>density<br>in liquid<br>(MJ/liter) |
|----------|--------------------------------|---------------------------|---------------------------------------------------------|------------------------------------------------------------------------|
| Hydrogen | 1                              | Gas                       | $8.4 - 10.4^3$                                          | 8.4 – 10.4 <sup>3</sup>                                                |
| Methane  | 0.25                           | Gas                       | 21 (17.8) <sup>2</sup>                                  | 12.6 (10.8) <sup>2</sup>                                               |
| Ethane   | 0.2                            | Gas                       | 23.7                                                    | 12                                                                     |
| Propane  | 0.18                           | Gas (liquid) <sup>1</sup> | 22.8                                                    | 10.6                                                                   |
| Gasoline | 0.16                           | Liquid                    | 31.1                                                    | 13.2                                                                   |
| Ethanol  | 0.13                           | Liquid                    | 21.2                                                    | 12.3                                                                   |
| Methanol | 0.12                           | Liquid                    | 15.8                                                    | 11.9                                                                   |

Hydrogen density is nearly the same in all fuels. This narrow range suggests a natural benchmark for comparison of storage performance.

US DOE Hydrogen Program 2000 Annual Review May 9-11, 2000 San Ramon, California Sandia National Laboratories Livermore, California



#### Maximum storage densities (w/o system)

**Energy Density MJ/liter** 

| • | High pressure gas                          |                      |                       |
|---|--------------------------------------------|----------------------|-----------------------|
|   | <ul> <li>ambient temperature</li> </ul>    | 3600 psi: <b>2.0</b> | 5000 psi: <b>2.75</b> |
|   | <ul> <li>cryogenic system</li> </ul>       | 150 K: <b>3.5</b>    | 20 K: <b>8.4</b>      |
| • | Liquid hydrogen                            | 8.4                  |                       |
| • | Reversible storage media                   |                      |                       |
|   | <ul> <li>carbon structures</li> </ul>      |                      |                       |
|   | <ul> <li>nanotubes</li> </ul>              | ?                    |                       |
|   | <ul> <li>fullerenes</li> </ul>             | ?                    |                       |
|   | – hydrides                                 |                      |                       |
|   | <ul> <li>intermetallics</li> </ul>         | <b>10.8</b>          | - 12.0                |
|   | <ul> <li>alanates</li> </ul>               | 8.25                 |                       |
|   | <ul> <li>composite materials</li> </ul>    | ?                    |                       |
| • | Chemical methods                           | Eff. gasoline        | <u>methanol</u>       |
|   | <ul> <li>liquid fuel + reformer</li> </ul> | 50%: <b>6.6</b>      | 5.9                   |
|   |                                            | 75%: <b>9.9</b>      | 8.9                   |
|   | <ul> <li>off-board reprocessing</li> </ul> | ?                    |                       |
|   |                                            |                      |                       |

US DOE Hydrogen Program 2000 Annual Review May 9-11, 2000 San Ramon, California Sandia National Laboratories Livermore, California



# Programmatic guidelines

- A balanced program between scientific discovery and engineering validation is needed.
  - Portion of program invested in high risk approaches.
  - Collaboration with industry at all levels.
  - International partnerships beneficial.
  - Leverage off other programs.
- Program should not downselect technologies too early
  - Options should be fully explored.
  - Different technologies suited for different applications.
- Realistic goals should be set as metrics for progress.
  - Evaluate goals on a continuing basis
  - continue to refine roadmap





US DOE Hydrogen Program 2000 Annual Review May 9-11, 2000 San Ramon, California



#### **Materials Development**

- Carbon nanotubes M. Heben, NREL – near-term goal: ~6 wt.%
  - synthesis, processing, hydrogen absorption/desorption
- Carbon fullerenes
   R. Loutfy, MER
  - feasibility of fullerene-based storage
- Alanate hydrides
  - NaAlH4 : 5.5 wt.% hydrogen capacity
  - catalysts, properties
- Hydride development
  - near-term goal: 5.5 wt.% at <100 C (NaAlH4)</li>
  - bulk synthesis, scaled-up beds, characterization, safety studies
- Catalytically enhanced storage
  - new start
- Polymer dispersed metal hydrides
  - new start



C. Jensen, Univ. of Hawaii

T. Jarvi, United Technologies

K. Gross. SNL

C. Jensen, Univ. of Hawaii

#### Pressure Tank Development

- Lightweight tanks
   F. Mitlitisky, LLNL
  - goal: >10 wt.% 5000 psi

Conformable tanks

•

- R. Golde, Thiokol Propulsion Co.
- high pressure tanks with improved packing efficiency
- cryogenic hydrogen vessels S. Aceves, LLNL
  - design and testing for improved volume density
- Composite tank testing
   B. Odegard, SNL
  - comparison of high pressure hydrogen tank failure to other fuels.
     CNG, gasoline, methanol.



#### **Engineering Validation**

- PV/electrolysis/metal hydride K. Sapru, ECD
  - modeling and integration of storage with renewable energy sources
- Metal hydride/ organic slurry
  - chemical hydride for PEMFC vehicles
  - hydrogen transmission and storage
- Fuelcell/hydride powerplant
   G. C. Story, SNL
  - for underground mine and tunneling locomotive
- Thermal hydrogen compression
  - new start



D. DaCosta, Ergenics, Inc.

R. Breault, Thermo Power

# Other hydrogen storage programs (US)

- DOE/OTT
  - Fuels for Fuel Cells Program (P. Devlin)
     Parallel development of fuel processor and onboard H storage.
- DOE/OIT
  - Low cost hydrides for mine vehicles (SRTC)
     Part of Mining Industry of the Future initiative.
- IEA
  - Task 12 will be completed Oct. 2000
  - New task being formed: Advanced Solid and Liquid State Hydrogen Storage Materials (G. Sandrock)
- Industry Projects



# Other hydrogen storage programs (non US)

- Canadian Projects
  - Alanates (A. Zaluska, McGill Univ.)
  - Nanocrystalline Mg-based hydrides (Hydro-Quebec)
  - Carbon adsorption (IRH)
- European Projects
  - liquid hydrogen storage (BMW)
  - refueling station (BMW)
- WENET (Japan)
  - Metal-H complex ions (S. Suda, Kogakuin Univ.)
  - others



# Some highlights from this year

- Continuing progress in nanotubes
  - high purity synthesis and processing methods.
  - > 6 wt.% appears feasible.
- Important progress achieved on alanates
  - 5.5 wt.% at low temperatures appears feasible.
- Continued improvement in lightweight and conformable tanks
  - more efficient packing of high pressure tanks
- integration of storage with applications
  - PV system
  - mine vehicle
- Three new starts
  - catalyst enhanced storage
  - polymer dispersed hydride
  - thermal hydrogen compression

