High Density Hydrogen Storage System Demonstration Using NaAlH<sub>4</sub> Complex Compound Hydrides

D. Mosher, X. Tang, S. Arsenault, B. Laube, M. Cao, R. Brown, S. Saitta, J. Costello

> United Technologies Research Center East Hartford, Connecticut

Report to the U.S. Department of Energy (DOE) Contract Number: DE-FC36-02AL-67610

December 19, 2006\*

\* Presented to the DOE and the FreedomCAR & Fuel Partnership Hydrogen Storage Tech Team

This presentation does <u>not</u> contain proprietary or confidential information

**Objective:** Identify and overcome the critical technical barriers in developing complex hydride based storage systems, especially those which *differ from conventional metal hydride systems*, to meet DOE system targets.

**Approach:** Design, fabricate and test a sequence of subscale and full scale prototypes involving material development such as safety assessment, catalysis and scaled-up processing.

Early systems development in parallel with novel materials research has been and will be important to hydrogen storage maturity.

#### **Current Systems Focus**

- On-board rechargeable
- Based on NaAlH<sub>4</sub> as representative complex hydride
- Generalize to materials which require moderate charging pressures



# **Program Plan**

- Safety Analysis
- Atomistic/Thermodynamic Modeling
- 50g H<sub>2</sub> Prototype System
- Media Kinetic Characterization & Modeling
- Heat/Mass Transfer Analysis
- High Temp. Composite Tank Development
- Component Fabrication
- Assembly System Fabrication
- Evaluation Facility Development
- Ikg H<sub>2</sub> CCHSS#1 Assembly
- CCHSS#1 Evaluation

- CCHSS#1 Model Validation
- CCHSS#2 System Design
  - Advanced HX design
  - New media filling method
  - Compact manifold
- Enhanced Media
  - Advanced catalyst concepts
  - High volume synthesis method
- CCHSS#2 Prototype
  - Fabrication
  - Performance Testing
  - Model Validation
- NaAlH<sub>4</sub> System Neutralization
  - Process development
  - Prototype 1 decommissioning
- New Materials
  - Powder densification

Program tasks nearing completion.



**Research Center** 

### **Review of Prototypes**

|                   | LaNi₅                                 | NaAlH <sub>4</sub>                       | System Element  |
|-------------------|---------------------------------------|------------------------------------------|-----------------|
| Charging pressure | 10 bar                                | 100 bar                                  | 了 Composite     |
| Media volumetrics | 50 kg H <sub>2</sub> / m <sup>3</sup> | 25 kg H <sub>2</sub> / m <sup>3</sup> ** | vessel ل        |
| Powder loading    | Controllable                          | Challenging                              | ► Powder        |
| Expansion forces  | High                                  | < 7 bar, < 0.9 g/cc                      | J densification |
| Water reactivity  | Low                                   | High                                     | — Oil HT fluid  |

\*\* 50% powder relative density, 4% H<sub>2</sub> media capacity

NaAlH<sub>4</sub> Prototypes



Full scale – 19 kg hydride Aluminum foam



Sub scale – 3.5 kg hydride Aluminum fins



### Second Prototype Overview

#### Improvements over first prototype:

- Lighter weight composite vessel with conventional domed end.
- Lighter weight heat exchanger with fins for superior long range heat transport.
- Denser powder packing which is performed within a pre-constructed system, improving both volumetrics and gravimetrics.

#### **Characteristics of second prototype**

- Developed at nominally  $(1/2)^3 = 1/8^{\text{th}}$  scale or 1/8 kg H2.
- Intermediate size to balance:
  - Fabrication challenges keep unique supporting hardware to reasonable size and cost.
  - Ability to demonstrate technologies and perform projections.



Modifying the plan to design, fabricate and test a  $(1/2)^3 = 1/8^{\text{th}}$  scale system was the right thing to do.

- Greater emphasis of resources on powder densification and demonstration of lightweight, as-fabricated system.
- Lower degree of "projecting" to 2.3 wt% and 2.5 wt% systems.
- Recommend this size scale for first prototypes in future efforts.



**Original, full scale plan** nominally 25 kg of hydride Prototype 2 3.5 kg of hydride



### Prototype 2 Heat Exchanger Design

#### Fabricated heat exchanger based on the following design process:



United Technologies

**Research Center** 

### Fabrication

Finned Tube Heat Exchanger



#### **Stainless Steel Liner**



5' x 5' x 4' Assembly Glove Box

Carbon Fiber / Epoxy Overwrap



Shaker System







### Energy density is the product of

- Hydride powder density
- H<sub>2</sub> weight % capacity
- System volumetric efficiency

### Prototype improvement

- Prototype 1: 200 Wh / L
- Prototype 2: 700 Wh / L



Hydride powder density is as important as H<sub>2</sub> weight % capacity for system volumetric capacity



### Powder Loading – Procedure Development

#### Development of loading procedure

#### Results for second prototype hydride powder





Powder column 0.72 +/- 0.02 g/cc



Disassembled finned test article > 0.77 g/cc

Dual axis vibratory shaker Controlled amplitudes and frequencies



Prototype 2 0.72 to 0.76 g/cc

Prototype 1 0.44 g/cc

Consistent densities across multiple configurations & geometries



## Milling and Densification (Powder Column)

# Ball milling procedures affect not only kinetics, but also powder densification.

#### 0.64 g/cc





#### 0.85 g/cc





Used for projection

#### 0.72 g/cc





Prototype 2 material



**Research Center** 

### Material Quality Assurance – Batch Testing

Desorption 100 - 150 C / 0 - 1 bar



**Technologies** Research Center

United

### **Prototype 2 Testing Apparatus**

- Addition of secondary vessel for risk reduction
- First test modified Sievert's apparatus approach with 100 bar dosing









### **Absorption Test**



- Hydrogen was added to the prototype in doses from an accumulator volume.
- System charging pressure is reduced from its starting value of  $\approx$  100 bar after dosing.
- The first point includes both compressed gas and absorbed hydrogen storage.
- Desorption: 150 C &  $\approx$  1 atm.



### Weight and Volume

- Hydride material: 3.5 kg, 0.72 g/cc
- Gravimetric capacity = 136 / 6846 = 0.020 (g H2 / g System)
- Volumetric capacity = 136 / 6450 = 0.021 (g / cc)



United Technologies

## Absorption Test – Temperatures



- Four internal thermocouples located at <sup>1</sup>/<sub>4</sub> length and as given in the figure.
- Sheathed type K with 0.032" diameter some averaging →
- Apparent exothermic reaction for slightly less than 1 hr.
- Pressure data only at dosing points, not continuous.
- Detailed model comparisons will be made with subsequent data.

### **Testing Status**

#### Modifications and Issues:

- Improvements in oil temperature management.
- Significant noise in pressure transducer data was reduced.
- Addition of Coriollis force flow meter will use burst flow to improve accuracy.
- After being dormant for almost 2 months, a leak has occurred:
  - Pressurization to 1420 psi was normal, 1510 psi resulted in rapid leak rate.
  - Due to possible ejection of powder into secondary containment vessel, our neutralization process was applied before removing the lid. Upon opening secondary vessel, no ejected powder was noted.
  - The system was leaked check with helium and the source confirmed to be the O-ring. A metal-to-metal seal was used to keep the Viton O-ring from being exposed to hydride which did not perform as expected. A Kalrez Oring is now being installed.





### System Scaling and Projection

#### Elements of preliminary projection:

- Potential hydride mass = 0.85 g/cc \* 4900 cc = 4165 g for subscale
- Scaling vessel to full size (10X)
  - Liner retains 0.020" thickness; liner mass scales as (Volume)^(2/3)
  - Hydrogen valve has the same mass
- Resulting full scale gravimetric efficiency is 0.63 (kg hydride / kg system)
- At 0.85 g/cc, 140 C and 100 bar, the compressed gas storage is effectively 0.25 wt% (kg H2 gas / kg hydride).
- With a 3.4 wt% material, system would be (3.4% + 0.25%) \* 0.63 = 2.3%

All of these projection elements have been demonstrated separately, substantiating that such a 2.3 wt% system could be constructed with the currently developed technology.



### **Performance Metrics and Projections**

#### Complex Compound Hydride Storage System (CCHSS) Performance Metrics

|                                  | Material &                                    | NaAlH₄      | NaAlH₄    | TBD     | TBD     |       |        |
|----------------------------------|-----------------------------------------------|-------------|-----------|---------|---------|-------|--------|
|                                  | Version:                                      | Prototype 2 | Projected | hydride | hydride | DOE T | argets |
| Characteristics & Metrics        | Units                                         |             |           |         |         | 2007  | 2010   |
| Material gravimetric capacity    | % kg H $_2$ / kg hydride                      | 3.4%        | 3.4% 🗖    | 6.5% 🖸  | 8.0%    |       |        |
| H <sub>2</sub> charging pressure | bar                                           | 100         | 100       | 70      | 50      |       |        |
| Packed powder density            | kg hydride / m <sup>3</sup> powder            | 720 匝       | 🔷 850     | 800     | 850     |       |        |
| Material volumetric capacity     | kg H $_2$ / m $^3$ powder                     | 24          | 29        | 52      | 68      |       |        |
| System gravimetric efficiency    | kg hydride / kg system                        | 0.515 📭     | 📥 0.63 📭  | 0.67 🗖  | 0.75    |       |        |
| System volumetric efficiency     | m <sup>3</sup> powder / m <sup>3</sup> system | 0.76        | 0.76      | 0.7     | 0.7     |       |        |
| Normalized compressed gas        | % kg H ₂ gas / kg hydride                     | 0.5%        | 0.3%      | 0.3%    | 0.2%    |       |        |
| System                           | % kg H 2 / kg system                          | 2.0%        | 2.3%      | 4.5%    | 6.1%    | 4.5%  | 6.0%   |
| gravimetric capacity             | kWh / kg                                      | 0.66        | 0.8       | 1.5     | 2.0     | 1.5   | 2.0    |
| System                           | kg H ₂/m³                                     | 21.1        | 24.0      | 37.8    | 48.6    | 36    | 45     |
| volumetric capacity              | kWh/L                                         | 0.70        | 0.80      | 1.26    | 1.62    | 1.2   | 1.5    |
| Notes                            |                                               |             |           |         |         |       |        |

a: Improved catalysts & processing

b: Demonstrated powder packing enhancement

d: Materials discoverye: Reduction of charging pressure & vessel mass

c: Improved densification & size scaling

Need 8 wt% material and 75% mass efficiency of system to meet 6 wt% system



## **Evaluation of New Materials – System Integration**

|                                        | Theoretical         | Initial                  | Vibratory                | Enhanced                 |  |
|----------------------------------------|---------------------|--------------------------|--------------------------|--------------------------|--|
| Compound                               | Rev. H <sub>2</sub> | Density                  | Settling                 | Settling                 |  |
|                                        | wt fraction         | kg H <sub>2</sub> /liter | kg H <sub>2</sub> /liter | kg H <sub>2</sub> /liter |  |
| LiMg(AIH <sub>4</sub> ) <sub>3</sub> * | 0.089               | 0.010                    | 0.014                    | 0.019                    |  |
| M-B-N-H System A *                     | 0.088               | 0.033                    | 0.041                    | 0.042                    |  |
| M-B-N-H System B *                     | 0.082               | 0.035                    | 0.044                    | 0.044                    |  |
| NaAlH <sub>4</sub> - best result **    | 0.056               | 0.026                    | 0.041                    | 0.042                    |  |



\* Densification of as-received new materials, with no further processing.
\*\* 6% TiF<sub>3</sub>-NaAlH<sub>4</sub>, dehydrided, and paint shaken, close to "as-received."

Powder column densification rig



Use of systems development methods to evaluate novel materials.



20

16

Second prototype system development resulted in significant gravimetric and volumetric improvements:

|                        |                   | As-Fab      | oricated    | Projected   |             |  |
|------------------------|-------------------|-------------|-------------|-------------|-------------|--|
| Metric                 | Units             | Prototype 1 | Prototype 2 | Prototype 1 | Prototype 2 |  |
| Gravimetric efficiency | kg hyd. / kg sys. | 0.14        | 0.515       | 0.48        | 0.60 - 0.63 |  |
| Gravimetric density    | % kg H2 / kg sys. | 0.4%        | 2.0%        | 1.7%        | 2.3%        |  |
| Powder density         | g/cc              | 0.44        | 0.72        | 0.60        | 0.85        |  |
| Volumetric density     | kWh / L           | 0.20        | 0.70        | 0.60        | 0.80        |  |

