

PEM Electrolysis R&D Webinar

May 23, 2011 Presented by Dr. Katherine Ayers

Outline

- Key Messages About Electrolysis
- Company Intro and Market Discussion
 - Electrolysis Technology Comparison
- Infrastructure Challenges and Solutions
 - System Approaches: Capacity and Delivery Pressure
 - Materials Advancements: Cost and Efficiency Improvements
- Summary and Future Vision

Key Takeaways for Today

- Hydrogen markets exist today that can leverage advancements in on-site generation technologies
- PEM electrolysis already highly cost competitive in these markets
- PEM technology meets alkaline output capacities and has performance advantages for many applications
- Multiple fueling stations utilizing hydrogen from electrolysis: can help bridge the infrastructure gap
- Clear pathways exist for considerable cost reductions and efficiency improvements despite the maturity of the technology

Proton Energy Systems/Proton OnSite

- Manufacturer of onsite gas generation products
- Core competencies in Proton Exchange Membrane (PEM) technology
- Founded in 1996 changed name from Proton Energy Systems in April 2011.
- ISO 9001:2008 registered
- Product development, manufacturing & testing
- Turnkey product installation
- World-wide sales and service
- Over 1,600 systems operating in 62 different countries.

Cell Stacks

Complete Systems

4

Storage Solutions

RFC Integration

ON SITE

Headquarters in Wallingford, CT

Markets and Products

Government Semiconductors Laboratories Heat Treating **Power Plants 2011:** C-Series, 65 kg/day 2000: 2009: 2006: S-Series Outdoor **HPEM HPEM** 1-2 kg/day

Steady History of Product Introduction

1999: GC 300-600 mL/min

Pro

2003: H-Series 4-12 kg/day

2006: StableFlow Hydrogen Control System

5

2010: Lab Line

Industrial Hydrogen Markets

- Hydrogen is fastest growing industrial gas (7%/year)
- Major industrial gas consuming industries:
 - Power Plants/Electric Power Generator Cooling
 - Over 16,000 hydrogen-cooled generators world-wide
 - Addressable market estimated at over \$2.0 billion
 - Improved plant efficiency and output/reduced greenhouse gas emissions
 - Payback typically less than one year
 - Semiconductor manufacturing
 - Flat panel computer and TV screens
 - Heat treating
 - Analytical chemistry (carrier gases for GC, etc.)

Typical Power Plant Implementation

Environmental Benefits: Pollution reduction

- 1 ton of CO₂ for every MW/hr improvement
- Based on improvement from 95% to 99% H₂ purity

Demonstrated Benefits of Distributed Hydrogen Production

- Cost competitive vs. delivered solution
 - Delivered cost can exceed \$15/kg for "remote" installations (>15 ft off major road)
- Removes price fluctuation based on fossil fuel costs
 - Natural gas is major delivered source, delivered by diesel truck
- Improves supply reliability
 - Removes delivery logistics, need for inventory tracking and ordering
 - Stack durability of over 50,000 hours demonstrated
- Improves safety due to automation and inventory reduction
 - Eliminates delivery and change outs of bottles or trucks
 - Reduces inventory by orders of magnitude vs. 12-pack or tube trailer

PEM vs. Alkaline Liquid Electrolysis

- 1. Membrane technology enables high differential pressure
 - Eliminates need for strict pressure controls and slow turndown
 - Enables rapid changes in current for renewable integration: fast response time to current signal
 - Enables low pressure oxygen for safety and lower cost
- 2. Non-corrosive electrolyte
- 3. Stack operates at 4-5X current density of alkaline systems
 - Counteracts higher cost materials

System Efficiency Comparison

NREL-Xcel Energy Wind2Hydrogen Project

Proton Energy HOGEN 40RE (PEM)

HM-100

(Alkaline)

- Actual Measured Efficiency¹
 - PEM 57%

39% Improvement

Alkaline 41%

¹K. Harrison, Hydrogen Works Conference, San Diego, CA, Feb 17-19, 2009

Hydrogen Infrastructure Challenges

- Ramp-up
 - Fuel production
 - Storage
 - Transportation
 - End-customer delivery
- Pace with parallel ramp-up of related vehicles
- Continuum of options
 - Large, centralized plants
 - Neighborhood / captive fueling stations
 - Home-based fueling

- Traditional Markets
 - Vehicle Fleets
 - Buses
- Alternative Markets
 - Materials Handling
 - Military / Aerospace
 - Bikes/Motorbikes
 - Marine

PEM Electrolysis Role in Hydrogen Fueling

- Traditional fueling station concept: grow capacity with number of vehicles
 - Over 20 demonstrations worldwide at up to 13 kg/day
 - Next generation product opens up next larger fueling opportunities (up to 65 kg/day)
 - Fully packaged solutions developed with Air Products and Linde
- Home fueling concept to bridge gap
 - Based on less production output but higher pressure
 - Developing neighborhood fueler at up to 2.2 kg/day
 - Full electrochemical compression to 5000 psi or mechanical compression to 10,000 psi
- Renewable-based hydrogen production viability for both

Proton System R&D Strategy: Leverage Commercial and Military Experience

Military Markets

- Submarine life support
- Unmanned vehicles
 - UAV
 - UUV
- Silent Camp
 - Back up power
- Military fueling needs
 - Fork lifts
 - Light duty vehicles

Commercial Markets

- Industrial
- Vehicle fueling
- Telecomm backup
- Renewable energy storage

Early Fueling Station Examples

Electrolysis System Development

Larger Capacity

65 kg/day

13 kg/day

Higher Pressure

200-435 psi

Next Generation Fueling: 65 kg/day

- 5 times increase in hydrogen output at 1.5x foot print.
- Uses stack platform developed for Navy with Hamilton Sundstrand.
- Balance of plant funded by TARDEC, DOE, and internal funding
- Increased power supply and drying efficiency
- Now commercially available, first unit to AC Transit for bus fueling
- Also relevant for industrial applications

Proton Fueling Station

Greater than 10,000 miles / 300 H₂ fills to date

High Pressure: Neighborhood Fueling Prototype

- Electrochemical compression to 2400 psi, 2 kg/day
- 10,000 psi fueling capability
- Qualified for GM vehicle fueling

Conceptual Design: Neighborhood Fueler Gen 2

- Direct electrochemical compression and delivery at 5000 psi
- Currently performing on DOE Phase II SBIR to develop initial prototype

5000 psi System Development Progress

- Seal design verified at higher temperatures
- System concept and prototype design completed, hazard analysis completed
- Concept design of cell and stack components completed, prototypes on order

Current Stack Limitations

- Efficiency driven by:
 - Membrane resistance
 - Oxygen overpotential
- Cost driven by:

32%

15%

System

- Membrane electrode assembly
- Flow fields/separators

Established Stack Durability

ON SITE

Technology Roadmaps

- Detailed product development pathways laid out internally
 - Balance of plant scale up
 - Cell stack cost and efficiency
 - Product improvements and introductions
- Balanced portfolio of near and long term implementation
- Executing on funded programs to address each area

Membrane Resistance Reduction

- Standard materials, 25% reduced thickness
 - Internally funded, implemented 2010
- Reinforced membranes, 60% reduced thickness
 - Internal and ONR funding
 - Leverages W.L. Gore technology
 - 1000 hours demonstrated, passed 300 cycle accelerated stress test (5-mil fails test)
 - Efficiency > 5-mil Nafion

- New chemistries (hydrocarbon), 80% reduced thickness
 - NSF funded project, Phase I/II STTR
 - Reduced H₂ crossover, improved voltage at higher temp

High Current Performance, 80°C

O₂ Evolution Efficiency

Bimetallic blends, 50 mV demonstrated efficiency gain

High surface area/utilization, 60 mV demonstrated gain

- Phase 1 SBIR results
- Pursuing funding for continued efficiency gains and catalyst loading reductions

Resulting Efficiency Improvements

Predicted and Measured Cell Potential vs Current Density

2002-2011 Progress

Improvements have enabled double the current density at the same cell voltage over 3 design generations

Noble metal reduction

- Optimize current production (25% reduction)
 - Internally funded, 25% reduction implemented 2009
- Next generation process (50% cumulative reduction)
 - Cathode: internally funded, 66% reduction fully qualified for production 2009
 - Anode: DOE funded, 55% loading reduction feasibility demonstrated 2010
- Alternate deposition techniques and engineered nanostructures (>90% cumulative reduction)
 - DOE + internal investment,
 90% loading reduction feasibility
 demonstrated 2010
 - Leverages 3M technology
 - Separate test shows >1500 hours of continuous operation

Flow Field Cost Reduction

~\$1.5M DOE funding allocated to date

Traditional approaches, 25% savings

Implemented 2010

Alternate coating strategies, 30% cumulative savings

Ti-10Zr Ti-10V-5Zr

Ti

Unitized parts and low cost manufacturing method, 50% cumulative savings

Laminate designs, 70% cumulative savings (enabled by coating development)

Cell Stack Cost Reductions

Noble Metal Reduction

Flow Field Cost

0.6 ft² Stack Development

- Improvement in bipolar plate design
 - Current 0.1 ft² design tested to over 1 million cell hours
 - CFD modeling shows more uniform flow
- Demonstrated operation up to 425 psi
 - >10,000 hours validated

Next Steps: Scale Up

- Fully tested at 1-3 cell level
- TARDEC FY11 program: Scale up to 50 kg/day full size design point

Impact of Scale Up on Balance of Plant Cost

Summary and Future

- Commercial products leveraging PEM electrolysis are growing in capacity and advancing in cost and efficiency
- These products serve existing markets and can directly leverage investments in PEM fuel cell technology
- PEM electrolysis can help to bridge the infrastructure gap and has already been demonstrated at relevant scale
 - Additional advantages in potential for zero carbon footprint
- Cost/efficiency targets can be achieved through leveraging of existing science, without major new invention
- Investment in electrolysis is key to move demonstrated cost and efficiency improvements from the lab to production

Acknowledgments

Cell Stack

- Luke Dalton
- Everett Anderson
- Chris Capuano
- Andy Roemer
- Brett Tannone
- Mike Niedzwiecki
- Judith Manco
- Danna Begnoche

High Pressure System •

- Bob Avery
- Steve Tommell

High Capacity System

- Steve Porter
- Ken Dreier
- Larry Moulthrop
- Mike Spaner
- Curt Ebner
- John Griffin
- Chau Chuong

Collaborators

- W.L. Gore
- 3M
- Penn State University
- Oak Ridge National Lab
- National Renewable Energy Lab

Funding

- Department of Energy EERE
- Army TARDEC
- Office of Naval Research
- National Science Foundation

