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Outline
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– Electrolysis Technology Comparison
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– System Approaches: Capacity and Delivery Pressure
– Materials Advancements: Cost and Efficiency Improvements

• Summary and Future Vision
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Key Takeaways for Today
• Hydrogen markets exist today that can leverage 

advancements in on-site generation technologies
• PEM electrolysis already highly cost competitive in these 

markets
• PEM technology meets alkaline output capacities and 

has performance advantages for many applications
• Multiple fueling stations utilizing hydrogen from 

electrolysis: can help bridge the infrastructure gap
• Clear pathways exist for considerable cost reductions 

and efficiency improvements despite the maturity of the 
technology
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• Manufacturer of onsite gas generation 
products

• Core competencies in Proton Exchange 
Membrane (PEM) technology

• Founded in 1996 – changed name from 
Proton Energy Systems in April 2011.

• ISO 9001:2008 registered
• Product development, manufacturing & 

testing
• Turnkey product installation
• World-wide sales and service
• Over 1,600 systems operating in 62 different 

countries.

Cell Stacks Complete Systems Storage Solutions RFC Integration

Proton Energy Systems/Proton OnSite

Headquarters in Wallingford, CT



Markets and Products
Power Plants LaboratoriesHeat Treating Semiconductors Government
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Steady History of Product Introduction

1999: GC
300-600 
mL/min

2000:
S-Series
1-2 kg/day

2003:
H-Series
4-12 kg/day

2006:
HPEM

2009:
Outdoor
HPEM

2006:
StableFlow
Hydrogen 
Control 
System

2011: C-Series, 65 kg/day

2010:
Lab Line



Industrial Hydrogen Markets
• Hydrogen is fastest growing industrial gas 

(7%/year)
• Major industrial gas consuming industries:

- Power Plants/Electric Power Generator Cooling
• Over 16,000 hydrogen-cooled generators 

world-wide
• Addressable market estimated at over $2.0 billion
• Improved plant efficiency and output/reduced 

greenhouse gas emissions
• Payback typically less than one year

- Semiconductor manufacturing
- Flat panel computer and TV screens
- Heat treating
- Analytical chemistry (carrier gases for GC, etc.)
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Typical Power Plant Implementation

Environmental Benefits:  Pollution reduction
• 1 ton of CO2 for every MW/hr improvement
• Based on improvement from 95% to 99% H2 purity
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Demonstrated Benefits of Distributed 
Hydrogen Production

• Cost competitive vs. delivered solution
– Delivered cost can exceed $15/kg for “remote” installations (>15 ft off 

major road)
• Removes price fluctuation based on fossil fuel costs

– Natural gas is major delivered source, delivered by diesel truck

• Improves supply reliability
– Removes delivery logistics, need for inventory tracking and ordering
– Stack durability of over 50,000 hours demonstrated

• Improves safety due to automation and inventory reduction
– Eliminates delivery and change outs of bottles or trucks
– Reduces inventory by orders of magnitude vs. 12-pack or tube trailer



PEM vs. Alkaline Liquid Electrolysis

1. Membrane technology enables 
high differential pressure
• Eliminates need for strict pressure 

controls and slow turndown
• Enables rapid changes in current 

for renewable integration: fast 
response time to current signal

• Enables low pressure oxygen for 
safety and lower cost

2. Non-corrosive electrolyte
3. Stack operates at 4-5X current 

density of alkaline systems
• Counteracts higher cost materials
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50 ms response 
time demonstrated



System Efficiency Comparison
• NREL-Xcel Energy Wind2Hydrogen Project

• Actual Measured Efficiency1

– PEM 57%
– Alkaline 41%

1K. Harrison, Hydrogen Works Conference, San Diego, CA, Feb 17-19, 2009

39% Improvement
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Hydrogen Infrastructure Challenges

• Ramp-up
– Fuel production
– Storage
– Transportation
– End-customer delivery

• Pace with parallel ramp-up
of related vehicles

• Continuum of options
– Large, centralized plants
– Neighborhood / captive fueling stations
– Home-based fueling

• Traditional Markets
– Vehicle Fleets
– Buses

• Alternative Markets
– Materials Handling
– Military / Aerospace
– Bikes/Motorbikes
– Marine
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PEM Electrolysis Role in Hydrogen Fueling

• Traditional fueling station concept: grow capacity with 
number of vehicles
– Over 20 demonstrations worldwide at up to 13 kg/day
– Next generation product opens up next larger fueling 

opportunities (up to 65 kg/day)
– Fully packaged solutions developed with Air Products and Linde

• Home fueling concept to bridge gap
– Based on less production output but higher pressure
– Developing neighborhood fueler at up to 2.2 kg/day

• Full electrochemical compression to 5000 psi or mechanical compression to 
10,000 psi

• Renewable-based hydrogen production viability for both



Proton System R&D Strategy: Leverage 
Commercial and Military Experience

Military Markets
• Submarine life support
• Unmanned vehicles

– UAV
– UUV

• Silent Camp
– Back up power

• Military fueling needs
– Fork lifts
– Light duty vehicles

Commercial Markets
• Industrial
• Vehicle fueling
• Telecomm backup
• Renewable energy storage
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Early Fueling Station Examples
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Electrolysis System Development
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13 kg/day 65 kg/day

Larger Capacity

Higher Pressure

2400-2800 psi
200-435 psi



• 5 times increase in hydrogen output at 1.5x foot print.
• Uses stack platform developed for Navy with Hamilton Sundstrand.
• Balance of plant funded by TARDEC, DOE, and internal funding
• Increased power supply and drying efficiency 
• Now commercially available, first unit to AC Transit for bus fueling
• Also relevant for industrial applications

Next Generation Fueling: 65 kg/day
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Proton Fueling Station

Greater than 10,000 miles / 300 H2 fills to date

700 bar, 65 kg/day capacity
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High Pressure: Neighborhood Fueling Prototype
• Electrochemical 

compression to 
2400 psi, 2 kg/day

• 10,000 psi fueling 
capability

• Qualified for GM 
vehicle fueling
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Conceptual Design:
Neighborhood Fueler Gen 2

• Direct electrochemical compression 
and delivery at 5000 psi

• Currently performing on DOE 
Phase II SBIR to develop initial 
prototype
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5000 psi System Development Progress
• Seal design verified at higher temperatures
• System concept and prototype design 

completed, hazard analysis completed
• Concept design of cell and stack 

components completed, prototypes on order
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Design Concept 1
*unacceptable MEA damage

Design 
Concept 2



Current Stack Limitations
• Efficiency driven by:

– Membrane resistance
– Oxygen overpotential

• Cost driven by:
– Membrane electrode assembly
– Flow fields/separators
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Established Stack Durability
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>60,000 hours of 
operation demonstrated in 

commercial stack

20,000 hours of operation 
demonstrated at 2400 psi
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Technology Roadmaps
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• Detailed product development pathways laid out internally
– Balance of plant scale up
– Cell stack cost and efficiency
– Product improvements and introductions

• Balanced portfolio of near and long term implementation
• Executing on funded programs to address each area



Membrane Resistance Reduction
• Standard materials, 25% reduced thickness

– Internally funded, implemented 2010
• Reinforced membranes, 60% reduced thickness

– Internal and ONR funding
– Leverages W.L. Gore 

technology
– 1000 hours demonstrated, 

passed 300 cycle accelerated
stress test (5-mil fails test)

– Efficiency > 5-mil Nafion

• New chemistries (hydrocarbon), 80% reduced thickness
– NSF funded project, Phase I/II STTR
– Reduced H2 crossover, improved voltage at higher temp

1800 mA/cm2
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High Current Performance, 80°C
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O2 Evolution Efficiency

• Phase 1 SBIR results
• Pursuing funding for 

continued efficiency 
gains and catalyst 
loading reductions
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Bimetallic blends, 50 mV 
demonstrated efficiency gain

High surface area/utilization, 
60 mV demonstrated gain
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Resulting Efficiency Improvements
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2002-2011 Progress

Improvements have enabled double the current density at the same 
cell voltage over 3 design generations
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Noble metal reduction
• Optimize current production (25% reduction) 

– Internally funded, 25% reduction implemented 2009

• Next generation process (50% cumulative reduction) 
– Cathode: internally funded, 66% reduction fully qualified for production 2009
– Anode: DOE funded, 55% loading reduction feasibility demonstrated 2010

• Alternate deposition techniques 
and engineered nanostructures 
(>90% cumulative reduction)
– DOE + internal investment, 

90% loading reduction feasibility 
demonstrated 2010

– Leverages 3M technology
– Separate test shows >1500 hours 

of continuous operation

80 C operation
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Flow Field Cost Reduction

Traditional approaches, 25% savings

Laminate designs, 70% cumulative 
savings (enabled by coating development)

Unitized parts and low cost manufacturing 
method, 50% cumulative savings

Implemented 2010
Stamping

Diffusion bonding

Alternate coating strategies, 
30% cumulative savings

~$1.5M DOE funding allocated to date
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Cell Stack 
Cost Reductions
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Noble Metal Reduction

Flow Field Cost



0.6 ft2 Stack Development
• Improvement in bipolar plate design

– Current 0.1 ft2 design tested to over 
1 million cell hours

– CFD modeling shows more uniform flow
• Demonstrated operation up to 425 psi

– >10,000 hours validated
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Next Steps: Scale Up
• Fully tested at 1-3 cell level
• TARDEC FY11 program: Scale up to 50 kg/day 

full size design point
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Impact of Scale Up on Balance of Plant Cost

BoP represents ~1/2 of 
product cost at 12 kg/day
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Summary and Future
• Commercial products leveraging PEM electrolysis are 

growing in capacity and advancing in cost and efficiency
• These products serve existing markets and can directly 

leverage investments in PEM fuel cell technology
• PEM electrolysis can help to bridge the infrastructure gap 

and has already been demonstrated at relevant scale
– Additional advantages in potential for zero carbon footprint

• Cost/efficiency targets can be achieved through leveraging 
of existing science, without major new invention

• Investment in electrolysis is key to move demonstrated cost 
and efficiency improvements from the lab to production 
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