

PEM Electrolysis R&D Webinar

May 23, 2011 Presented by Dr. Katherine Ayers

Outline

- •Key Messages About Electrolysis
- \bullet Company Intro and Market Discussion
	- Electrolysis Technology Comparison
- Infrastructure Challenges and Solutions
	- System Approaches: Capacity and Delivery Pressure
	- Materials Advancements: Cost and Efficiency Improvements
- •Summary and Future Vision

Key Takeaways for Today

- \bullet Hydrogen markets exist today that can leverage advancements in on-site generation technologies
- \bullet PEM electrolysis already highly cost competitive in these markets
- \bullet PEM technology meets alkaline output capacities and has performance advantages for many applications
- \bullet Multiple fueling stations utilizing hydrogen from electrolysis: can help bridge the infrastructure gap
- \bullet Clear pathways exist for considerable cost reductions and efficiency improvements despite the maturity of the technology

Proton Energy Systems/Proton OnSite

- • **Manufacturer of onsite gas generation products**
- • **Core competencies in Proton Exchange Membrane (PEM) technology**
- • **Founded in 1996 – changed name from Proton Energy Systems in April 2011.**
- •**ISO 9001:2008 registered**
- • **Product development, manufacturing & testing**
- •**Turnkey product installation**
- •**World-wide sales and service**
- • **Over 1,600 systems operating in 62 different countries.**

Cell Stacks

Complete Systems Storage Solutions RFC Integration

Headquarters in Wallingford, CT

Markets and Products

1999: GC300-600 mL/min

2003:H-Series4-12 kg/day

2006:StableFlow Hydrogen **Control System**

2010:Lab Line

Industrial Hydrogen Markets

- Hydrogen is fastest growing industrial gas (7%/year)
- • Major industrial gas consuming industries:
	- Power Plants/Electric Power Generator Cooling
		- Over 16,000 hydrogen-cooled generators world-wide
		- Addressable market estimated at over \$2.0 billion
		- Improved plant efficiency and output/reduced greenhouse gas emissions
		- Payback typically less than one year
	- Semiconductor manufacturing
	- Flat panel computer and TV screens
	- Heat treating
	- Analytical chemistry (carrier gases for GC, etc.)

Typical Power Plant Implementation

Environmental Benefits: Pollution reduction

- \bullet 1 ton of CO_2 for every MW/hr improvement
- \bullet Based on improvement from 95% to 99% H_2 purity

Demonstrated Benefits of Distributed Hydrogen Production

- \bullet Cost competitive vs. delivered solution
	- Delivered cost can exceed \$15/kg for "remote" installations (>15 ft off major road)
- • Removes price fluctuation based on fossil fuel costs
	- Natural gas is major delivered source, delivered by diesel truck
- \bullet Improves supply reliability
	- Removes delivery logistics, need for inventory tracking and ordering
	- Stack durability of over 50,000 hours demonstrated
- • Improves safety due to automation and inventory reduction
	- Eliminates delivery and change outs of bottles or trucks
	- Reduces inventory by orders of magnitude vs. 12-pack or tube trailer

PEM vs. Alkaline Liquid Electrolysis

- 1. Membrane technology enables high differential pressure
	- • Eliminates need for strict pressure controls and slow turndown
	- • Enables rapid changes in current for renewable integration: fast response time to current signal
	- • Enables low pressure oxygen for safety and lower cost
- 2. Non-corrosive electrolyte
- 3. Stack operates at 4-5X current density of alkaline systems
	- •Counteracts higher cost materials

ON SITE

System Efficiency Comparison

 \bullet NREL-Xcel Energy Wind2Hydrogen Project

Proton Energy **HOGEN 40RE (PEM)**

HM-100

(Alkaline)

- Actual Measured Efficiency¹
	- PEM 57%

39% Improvement

– Alkaline 41%

1K. Harrison, Hydrogen Works Conference, San Diego, CA, Feb 17-19, 2009

Hydrogen Infrastructure Challenges

- \bullet Ramp-up
	- Fuel production
	- Storage
	- Transportation
	- End-customer delivery
- Pace with parallel ramp-up of related vehicles
- Continuum of options
	- Large, centralized plants
	- Neighborhood / captive fueling stations
	- Home-based fueling

- Vehicle Fleets
- Buses
- Alternative Markets
	- Materials Handling
	- Military / Aerospace
	- Bikes/Motorbikes
	- Marine

PEM Electrolysis Role in Hydrogen Fueling

- \bullet Traditional fueling station concept: grow capacity with number of vehicles
	- Over 20 demonstrations worldwide at up to 13 kg/day
	- Next generation product opens up next larger fueling opportunities (up to 65 kg/day)
	- Fully packaged solutions developed with Air Products and Linde
- \bullet Home fueling concept to bridge gap
	- Based on less production output but higher pressure
	- Developing neighborhood fueler at up to 2.2 kg/day
		- • Full electrochemical compression to 5000 psi or mechanical compression to 10,000 psi
- \bullet Renewable-based hydrogen production viability for both

Proton System R&D Strategy: Leverage Commercial and Military Experience

Military Markets

- •Submarine life support
- \bullet Unmanned vehicles
	- UAV
	- UUV
- \bullet Silent Camp
	- Back up power
- \bullet Military fueling needs
	- Fork lifts
	- $-$ Light duty vehicles

Commercial Markets

- •**Industrial**
- •Vehicle fueling
- \bullet Telecomm backup
- •Renewable energy storage

Early Fueling Station Examples

Electrolysis System Development

Larger Capacity

13 kg/day 65 kg/day

Higher Pressure

Next Generation Fueling: 65 kg/day

- •5 times increase in hydrogen output at 1.5x foot print.
- •Uses stack platform developed for Navy with Hamilton Sundstrand.
- \bullet Balance of plant funded by TARDEC, DOE, and internal funding
- \bullet Increased power supply and drying efficiency
- \bullet Now commercially available, first unit to AC Transit for bus fueling
- \bullet Also relevant for industrial applications

Proton Fueling Station

Greater than 10,000 miles / 300 H₂ fills to date

High Pressure: Neighborhood Fueling Prototype

- • Electrochemical compression to 2400 psi, 2 kg/day
- 10,000 psi fueling capability
- \bullet Qualified for GM vehicle fueling

Conceptual Design: Neighborhood Fueler Gen 2

- Direct electrochemical compression and delivery at 5000 psi
- Currently performing on DOE Phase II SBIR to develop initial prototype

5000 psi System Development Progress

- •Seal design verified at higher temperatures
- • System concept and prototype design completed, hazard analysis completed
- • Concept design of cell and stack components completed, prototypes on order

Current Stack Limitations

- \bullet Efficiency driven by:
	- Membrane resistance
	- Oxygen overpotential
- \bullet Cost driven by:

32%

15%

System

- –Membrane electrode assembly
- –Flow fields/separators

Activation and Ohmic Overpotentials

Established Stack Durability

ON SITE

Technology Roadmaps

- \bullet Detailed product development pathways laid out internally
	- Balance of plant scale up
	- Cell stack cost and efficiency
	- Product improvements and introductions
- \bullet Balanced portfolio of near and long term implementation
- \bullet Executing on funded programs to address each area

Membrane Resistance Reduction

- \bullet Standard materials, 25% reduced thickness
	- Internally funded, **implemented 2010**
- \bullet Reinforced membranes, 60% reduced thickness
	- Internal and ONR funding
	- **Leverages W.L. Gore technology**
	- 1000 hours demonstrated, passed 300 cycle accelerated stress test (5-mil fails test)
	- Efficiency > 5-mil Nafion

- \bullet New chemistries (hydrocarbon), 80% reduced thickness
	- NSF funded project, Phase I/II STTR
	- $-$ Reduced H $_{\rm 2}$ crossover, improved voltage at higher temp

High Current Performance, 80 °**C**

O2 Evolution Efficiency

Bimetallic blends, 50 mV demonstrated efficiency gain

High surface area/utilization, 60 mV demonstrated gain

- \bullet Phase 1 SBIR results
- \bullet Pursuing funding for continued efficiency gains and catalyst loading reductions

Resulting Efficiency Improvements
Predicted and Measured Cell Potential vs Current Density

2002-2011 Progress

Improvements have enabled double the current density at the same cell voltage over 3 design generations

Noble metal reduction

- • Optimize current production (25% reduction)
	- Internally funded, 25% reduction **implemented 2009**
- • Next generation process (50% cumulative reduction)
	- Cathode: internally funded, 66% reduction **fully qualified for production 2009**
	- Anode: DOE funded, 55% loading reduction feasibility **demonstrated 2010**
- • Alternate deposition techniques and engineered nanostructures (>90% cumulative reduction)
	- DOE + internal investment. 90% loading reduction **feasibility demonstrated 2010**
	- **Leverages 3M technology**
	- Separate test shows >1500 hours of continuous operation

Flow Field Cost Reduction

~\$1.5M DOE funding allocated to date

Traditional approaches, 25% savings

Implemented 2010 **Phase 1 Verification(160 amps, 435 psi, 50°C)** 2.2502.200 \bullet Cell 1 2.150■Cell 2 2.100Voltage (V) **Voltage (V)** Cell 32.0502.0001.9501.9001.8501.8001.7500 1000 2000 3000 4000 5000 6000**Time (h)**

Alternate coating strategies, 30% cumulative savings

 $Ti-10Zr$ Ti-10V-5Zr

Ti

Unitized parts and low cost manufacturing method, 50% cumulative savings

Laminate designs, 70% cumulative savings (enabled by coating development)

Cell Stack Cost Reductions

Noble Metal Reduction

0.6 ft2 Stack Development

- • Improvement in bipolar plate design
	- –Current 0.1 ft² design tested to over 1 million cell hours
	- CFD modeling shows more uniform flow
- \bullet Demonstrated operation up to 425 psi
	- >10,000 hours validated

Next Steps: Scale Up

- \bullet Fully tested at 1-3 cell level
- TARDEC FY11 program: Scale up to 50 kg/day full size design point

Impact of Scale Up on Balance of Plant Cost

Summary and Future

- • Commercial products leveraging PEM electrolysis are growing in capacity and advancing in cost and efficiency
- \bullet These products serve existing markets and can directly leverage investments in PEM fuel cell technology
- \bullet PEM electrolysis can help to bridge the infrastructure gap and has already been demonstrated at relevant scale
	- Additional advantages in potential for zero carbon footprint
- • Cost/efficiency targets can be achieved through leveraging of existing science, without major new invention
- \bullet Investment in electrolysis is key to move demonstrated cost and efficiency improvements from the lab to production

Acknowledgments

Cell Stack

- •**•** Luke Dalton
- •Everett Anderson
- \bullet Chris Capuano
- \bullet Andy Roemer
- \bullet Brett Tannone
- \bullet Mike Niedzwiecki
- \bullet Judith Manco
- \bullet Danna Begnoche

High Pressure System •

- \bullet Bob Avery
- \bullet Steve Tommell

High Capacity System

- •Steve Porter
- •Ken Dreier
- \bullet Larry Moulthrop
- •Mike Spaner
- •Curt Ebner
- •John Griffin
- •Chau Chuong

Collaborators

- •W.L. Gore
- 3M
- \bullet Penn State University
- \bullet Oak Ridge National Lab
- \bullet National Renewable Energy Lab

Funding

- • Department of Energy EERE
- \bullet Army TARDEC
- \bullet Office of Naval Research
- \bullet National Science Foundation

