

Giner, Inc./GES Newton , Ma.

Monjid Hamdan Senior Program Manager May 23, 2011

- Giner, Inc.: Founded in 1973
- Giner Electrochemical Systems, LLC (GES): Founded in 2000 with a 30% Ownership by General Motors
 - Specializing in development of PEM based electrochemical technology, devices, and systems

Synergy of Giner, Inc./GES Technologies

PEM Electrolyzer Stack Technology Over 7500 units in the field

- Over last 15 years there has been rapid development of high-efficiency PEMbased water electrolyzer stacks for both military and commercial applications
- PEM Electrolyzer can generate hydrogen at high or low, balanced or differential pressure
- PEM Stacks have shown high durability and reliability with over 7500 Giner stacks in field use today
- Electrolyzers are also used for oxygen generation. PEM electrolyzer stacks are in use on the SeaWolf and Trident submarines
- Improvements in membrane technology are leading to higher efficiencies
 - Efficiencies demonstrated ~ 43.5 kWh/kg H₂

<u>Navy Stacks</u> Compact High-Pressure Design 55-kW Electrolyzer Current Density (2000 A/ft²) 1000 psi H₂/Ambient O₂ No High-Pressure Water Feed Pump or Containment Vessel

Laboratory Stacks 0.05 ft²/Cell 1-2 cells/Stack 0.3 to 0.6 lpm H₂ Ambient –120 psi H₂ Ambient O2

High Pressure Stacks 0.17 ft²/Cell 140SCFH H₂ (0.34kg/hr) 2000 A/ft² Ambient O₂

500 psi H₂

PEM Electrolyzer Markets

Government – Early

- US Navy
 - □ Life Support Oxygen Generators
- Aerospace / Space Electrolyzers
 - Radar Platforms; DARPA and MDA
 - Space Exploration; NASA
- RFC Electrolyzers
 - Moderate rate 0.3 2 kg/hr DOD Backup Power

Commercial – Near Term Future

- Grid Stabilization
- On-Site" H₂ Generators for car refueling
 - 12 20 kg/hr (large rate)
- Renewable" power storage
 - > 200 kg/hr (industrial rate)
 - > 100,000 kg/day (Centralized Stations)

Distributed Hydrogen - Today

- Analytical Hydrogen
 - □ Analytical labs : 1 3 g/hr (low rate)
- Industrial Hydrogen
 - "High purity" manufacturing processes:
 0.1 5 kg/hr (Moderate rate)

Hydrogen High Pressure Sep.

Prototype → Market Closed-Loop RFC System Lines to Gas Storage Oxygen High Pressure Sep. O₂ Storage H₂ Storage 1500 ASF Water Pistons **User Interface** Fuel Cell Electrolyzer

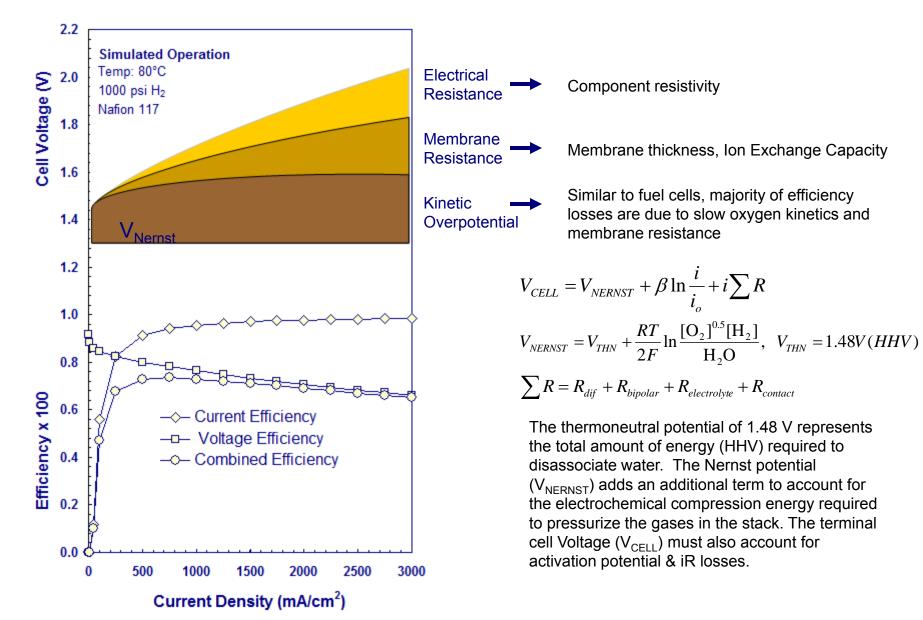
Demineralizers

On-board Vehicle Electrolyzer System (S-10)

6 kW Electrolyzer 40 SCFH-H₂ (~0.1 kg-H₂/hr) 1250 psi H₂/Ambient O₂ Volume ~ 6 ft^3

Unmanned Vehicle Applications

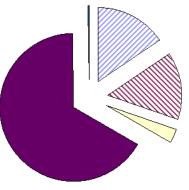
12 Cells - 0.17 ft² Cells/Stack 6-kW Electrolyzer 40 SCFH-H₂ (~0.1 kg-H₂/hr) High Current Density (1300-1500 A/ft²) 1000 psi H₂/Ambient O₂ No High-Pressure Water Feed Pump or **Containment Vessel** Volume 12.5ft³



Advantages of PEM Electrolyzer

- PEM electrolyzers operate at high current density
 Offsets higher cost/area of PEM electrolyzer
- At given current density PEM electrolyzers have higher stack efficiencies than alkaline systems
- PEM differential pressure technology produces H₂ at moderate to high pressure with O₂ production at atmospheric pressure
 - Eliminates handling of high-pressure O₂, reducing system cost & complexity, and improving safety
- Cost is benefited by advances in PEM fuel cell technology

Optimizing Performance of PEM Electrolyzers


DOE Program

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane

Challenges: Improve efficiencies and reduce capital costs of PEM-electrolyzer stacks & systems

Strategy: PEM electrolysis costs can be dramatically lowered by increasing membrane efficiencies, lowering part counts, increasing component durability, and thru implementation of new manufacturing processes

Analysis: Scaled to high volume production- Forecourt 1500 kg H₂/day, 500 units

Electrolyzer Stack
BOP
System Assembly Labor
Fixed O&M
Feedstock Costs

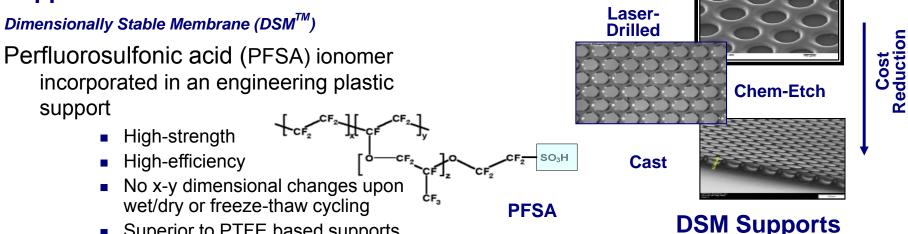
Electricity/Feedstock is the key cost component in hydrogen generation

DOE Targets: Distributed Water Electrolysis

Characteristics/units	2006	2012	2017-2020
Hydrogen Cost (\$/kg-H ₂)	4.80	3.70	2.00 - 4.00
Electrolyzer Cap. Cost (\$/kg-H ₂)	1.20	0.70	0.30
Electrolyzer Efficiency %LHV (%HHV)	62 (73)	69 (82)	74 (87)

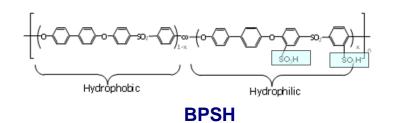
Program Objectives

- Develop and demonstrate advanced low-cost, moderate-pressure PEM water electrolyzer system to meet DOE targets for distributed electrolysis
 - □ Develop high efficiency, low cost membrane
 - Develop long-life cell-separator
 - Develop lower-cost prototype electrolyzer <u>stack</u>
 <u>system</u>
- Fabricate scaled-up stack components (membrane, cell-separators)
- Assembly electrolyzer stack/system & evaluate efficiency
- Deliver and Demonstrate prototype electrolyzer system at NREL



Low-Cost Electrolyzer Stack developed in DOE program

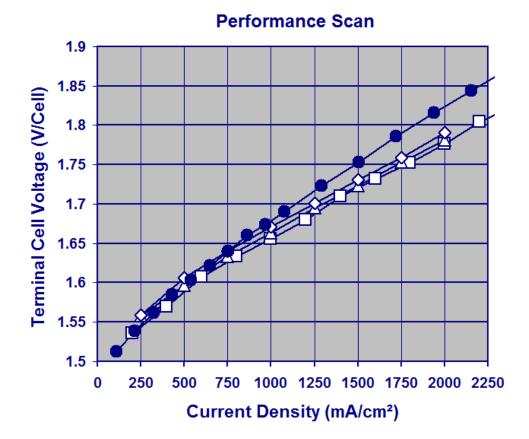
High Efficiency Membrane Development


Supported Membranes

Superior to PTFE based supports

Alternative Membranes

- Hydrocarbon Membranes
 - □ Bi-Phenyl Sulfone Membrane (BPSH)
 - Hydrocarbon/Phosphonate Membrane
 - Inexpensive starting materials
 - Trade-off between conductivity and mechanical properties
- PFSA (700 EW & 850EW) membranes
 - Approach is to optimize membrane ionomer EW and thickness, scale-up fabrication methods and techniques, and improve costs

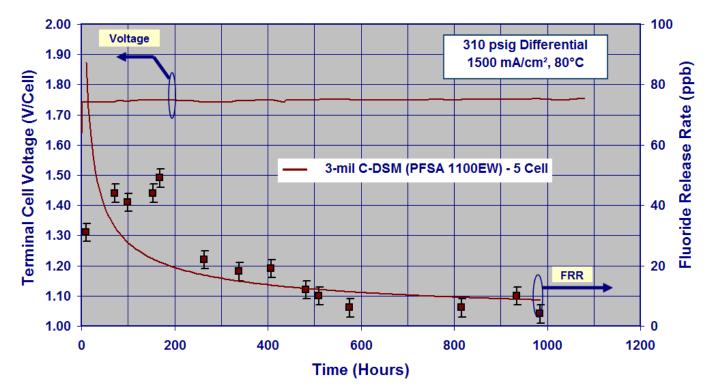

Optimizing Performance of PEM Electrolyzers

- Performance Milestone (Mar-2009/Mar-2010)
 - □ Chemically-Etched (C-) DSM > Nafion[®] 1135
- C-DSM (1100EW) selected for use in electrolyzer build
 - □ Lower cost, ease of fabrication

Performance: Scaled-up DSM & Stack Hardware

Test Conditions: 80°C 320-330 psig Cathode (H₂) 20 psig Anode (H₂O/O₂)

MEA/Hardware:


DSM thickness (3 mil) C(poco)/Ti seperator used in scaled-up 290-cm² HW

<u>HW</u>	<u>#Cells</u>	MEA
– □ – 160-cm ²	² 1	C-DSM
<u>-</u> ∆-290-cm ²	² 1	C-DSM
◇ 290-cm ²	² 5	C-DSM
🗕 160-cm ²	² 1	Nafion 1135

- Milestone (Dec-2010): 5-cell Scaled-up Short-Stack
 - □ Performance comparable to 160-cm² HW w/DSM > Nafion 1135[®]
 - Electrolyzer Stack utilizes scaled-up 290-cm² cell components (DSM, carbon/titanium, cell-separators)

Membrane Progress: Life Testing

Durability Performance

- Completed 1000 Hour Life Test Milestones
 - □ 1-cell (160-cm²) & 5-cell (290-cm²)
 - □ 5-cell includes scaled-up components
 - □ 1.73-1.75V (~88% HHV)
- DSM MEA from 5-cell short stack reassembled into a single-cell stack, total operating time = 4100+ hours

Membrane Degradation (Estimated Lifetime)

- F⁻ ion Release Rate: 3.7 μg/hr (<10 ppb)
- DSM -1100EW (Stabilized Ionomer): ~55,000 hours

Catalyst Demonstration

Successful testing of 3M catalyst, Pt loadings of 3M anode & cathode catalyst are oneorder magnitude lower than currently in use (~0.10 to 0.15mg Pt/cm²)! 12

High Durability Cell-Separator

Requirements

- Gas-impermeable (separates H₂ and O₂ compartments)
- High electrical conductivity and high surface conductivity
- □ Resistant to hydrogen embrittlement
- □ Stable in oxidizing environment
- Low-Cost

Legacy Design

 Multi-Layer piece consisting of Zr on hydrogen side and Nb on oxygen side

Single or Dual-Layer Ti separators

- □ Ti subject to hydrogen embrittlement
- Lifetime limited to <5000 hours, depending on pressure and operating conditions</p>

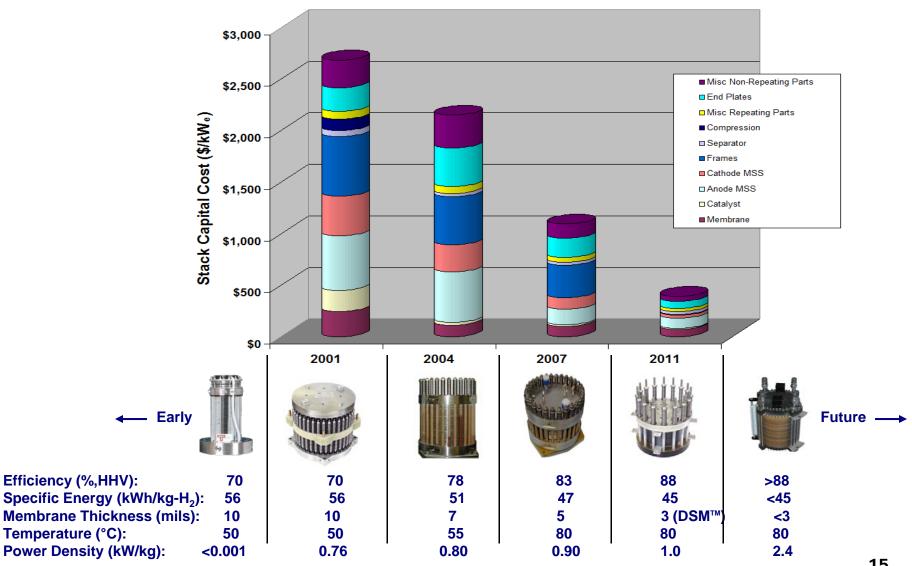
Approach

- Develop a new low-cost dual-layer structure
 - Evaluate methods of bonding dissimilar metal films
 - Evaluate non-metal substrate with conductive coating

Titanium Cell-Separator with Carbon coating

Cell-Separator Progress

Carbon/Titanium


- Carbon/Titanium Cell-Separators Scaled-up to 290-cm² (Milestone Oct-2010)
 - Evaluated in 5-cell short stack for 1000hours
 - Single cell-separator testing ongoing (4100+ hours)
 - Cell-Separators fabricated with low porosity carbon
 - POCO Pyrolitic Graphite (Surface Sealed)
 - Low hydrogen uptake (embrittlement)
 - Life-time estimate > 60,000 hours
- Analysis
 - C/Ti: No carbon delaminating or loss in thickness
 - □ Zr/Ti & ZrN/Ti (PVD coatings)
 - Delamination
- New low-cost carbon materials identified

Cell -Separator	Time (Hours)	H ₂ uptake (ppm)
C/Ti (290-cm²)	1000	105
C/Ti (160-cm²)	500	64
Zr/Ti(160-cm²)	500	140
ZrN/Ti (160-cm²)	500	31
Dual Layer Ti (160-cm ²)	500	1105
Ti (baseline)	0	~60
Ti Failure/Embrittlement: ~8000 ppm		

Property	Units	DOE Target FC Bipolar Plates 2015	GES C/Ti Cell- Separator 2011
Cost	\$/kW	3	> 10
Weight	kg/kW	<0.4	0.08
Electrical Conductivity	S/cm	> 100	>300 (680 Poco)
Flexural Strength	MPa	>25	86.1 (Poco)
Contact Resistance to GDL (MEA interface)	mΩ. cm²	< 20 @ 150 N/cm ²	17 @ 350 N/cm²



Stack Progress: Cost Reduction, Efficiency

Stack Progress: Advancements & Cost Reductions

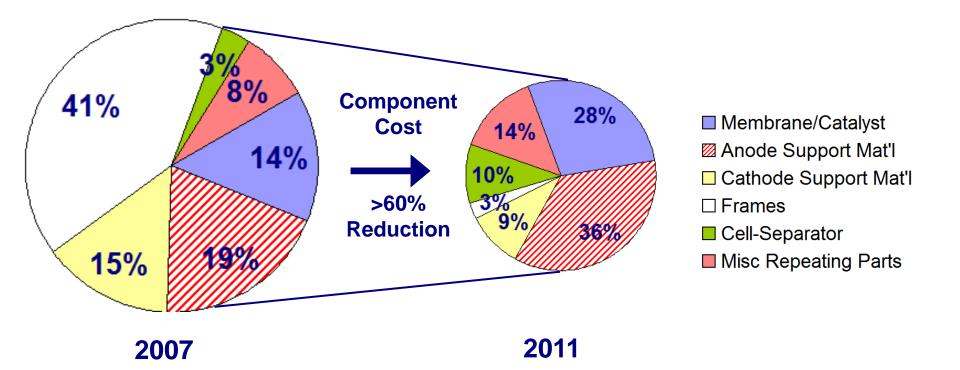
The repeating cell unit comprises 90% of electrolyzer stack cost

(2007-2010)

- Increased active area (290cm²)
- Reduced catalyst loadings

- Reduced Part Count 41 to 16
- Pressure Pad: Sub-assembly eliminated
- Molded Thermoplastic Cell Frame
- Cell-Separators: Replaced Nb/Zr with Carbon/Ti

(2010-2011)


- Frame Thickness reduced (by 30%)
 - Reduces Cathode & Anode Support Mat'l
- Reduced Part Count from 16 to 10 Parts/Cell-50% labor reduction
- Nb and Zr mat'l in Anode & Cathode supports eliminated- up to 98% material cost reduction
- DSM MEAs fabricated w/chem-etch supports- 90% cost reduction
- Carbon Steel End Plate (previously S.S.) - 66% material cost reduction

(Future)

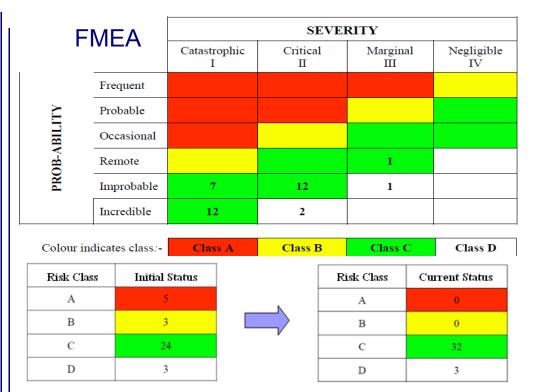
- Frame thickness reduced by 90%
- Carbon Steel Fluid End Plate
- Poco in carbon/Ti cell-separators replaced w/low-cost carbon (Entegris).
- Further catalyst reductions (3M)
- Increase Cell-Size
- Low-Cost Ionomers (Tokuyama)

Stack Progress: Repeating Cell Cost

•During DOE funding periods there has been significant cost reductions via new manufacturing techniques •Anode Support Material & MEAs (membrane & catalyst) now dominate cost of the electrolyzer stack 17

System Progress Controller & Power Supply Teamed with large volume commercial manufacturer (domnick hunter group of **Parker-Hannifin**) Power Supply Efficiency: 94% ■30kW, 600A, 50V **System Dimensions** Stack Requirement: 23.8kW Parker 7.20' H x 6.6' L x 7.84' W **Electrolyzer Stack & Dome** (O₂ Compartment)

H₂ –Dryer (H₂ Compartment)


- Dryer Efficiency: 96-97%
- Dual desiccant bed
- H₂ cooling prior to dryer

- Stack Efficiency: 88%
- Output: 0.5 kg-H₂/hr(-3% dryer),2.0 kg-H2/hr (w/larger Stack & PS)
- Stack Voltage: 47 V (27 Cells @1.75 V/cell,1741mA/cm²)
- Dome can accommodate >90-cell stack
- Operating Pressure: H₂ 350 psig; O₂ atm
- Water Consumption: 5.75 liters/hr
- Cooling Requirement: 3.3 kW

System Progress: Safety

- Failure Modes and Effects Analysis (FMEA) -Analysis indicates highest degree of safety is to enclose stack
- GES designed a Dome to enclose stack
 - Satisfies Codes Pertinent to Hydrogen Refueling Systems
 - Dome design modified for lower cost
 - Pressurized dome: reinforces stack during high pressure operation (future study)
 - Reviewed National & International Codes & Standards

 System design improvements and the use of a Dome eliminate the highest severity cases related to hydrogen ignition (Class A), & electrocution (Class B)

Don't Forget about the SAFETY Codes!

Electrolyzer systems must follow specific codes to become commercially viable

Vehicle **System** Electrolyzer Components **Systems** Refueling IEC 60079-10-1: CSA America HGV 4.1-2009: ISO/DIS 22734-2: Explosive Atmospheres, Hydrogen Generators Using Hydrogen Dispensing Systems Classification of Areas Water Electrolysis Process FPA NFPA 52-2010, Chapter 9: ISO 4126-1,-2: Safety Devices for Protection GH2 Compression, Gas Processing, **Against Excessive Pressure:** Storage, and Dispensing Systems Valves & Rupture Disks CODE COUNCIL Eventual UL and CSA International Fire Code Section 2209: CSA America HGV 4.7-2009: Versions of ISO/DIS 22734-2 Hydrogen Motor Fuel Dispensing and Automatic Valves for use in **Generation Facilities Gaseous Hydrogen Fueling** Stations SAE J2600: **SAE TIR J2601: Compressed Hydrogen Compressed Hydrogen Fueling Receptacles** Fueling Protocol

Codes Pertinent to Hydrogen Generators

Projected H₂ Cost

Specific Item Cost Calculation

Hydrogen Production Cost Contribution

H2A Model Version (Yr) Forecourt Model	Rev. 2.1.1 (FY2010)
Capital Costs	\$0.60
Fixed O&M	<\$0.39
Feedstock Costs \$1.54 min. @ 39.4 kWh _e /kg-H ₂ (~100% Eff.)	\$1.86 (DSM)
Byproduct Credits	\$0.00
Other Variable Costs (including utilities)	\$0.01
Total Hydrogen Production Cost (\$/kg) (Delivery not included)	2.86
Delivery (Compression, Storage, Disp.)	1.80
Total Hydrogen Production Cost (\$/kg)	4.66

Miles travelled kg-H ₂ /gallon of gasoline	60/30	
Total Cost in gallons of gasoline equivalent (\$)	2.33	

- Design capacity: 1500 kg H₂/day
- Assume large scale production- costs for 500th unit
- Assume multiple stacks/unit
 - Low-cost materials and component manufacturing
- 333 psig operation. H₂ compressed to 6250 psig
- Operating Capacity Factor: 70%
- Industrial electricity at \$0.039/kWhr

Cost of Electrolysis is Becoming Competitive

Summary

Demonstrated membrane reproducibility and durability

- Demonstrated DSM membrane performance better than that of Nafion 1135 at 80°C
- Demonstrate DSM membrane lifetime at 80°C for 1000 hours
 - □ Single-cell (160cm²), 5-Cell (290cm²)
 - □ Single-cell (290cm²) life test ongoing 4100+ hours

□ Cell Separator Development:

- Demonstrated performance comparable to dual-layer Ti separator in 160-cm² & 290-cm² electrolyzer
- Demonstrated significantly reduced hydrogen embrittlement with carbon/Ti separators
 - □ Expected cell-separator lifetime in the range > 60,000 hours

Scaled-Up Stack Design

- Significant progress made in stack cost-reduction (cell-components, membrane, & catalyst)
 - New manufacturing techniques used to reduce labor cost
 - Commercialized stack (orders have been delivered)
- □ Further reductions in membrane (material/labor) costs are required

□ System Development:

High efficient H₂-dryer demonstrated

Challenges

Market

Is this technology feasible for cost effective storage of renewable electricity?

- □ Dependent on scale
- □ Systems need to be demonstrated
- □ Industrial collaborations needed to promote technology
 - PEM electrolyzers have been purchased for grid stabilization, industrial and analytical H2 production, and military use. Vehicle refueling market needs to be established.

Technical

What are the materials and systems barriers to developing this technology?

- New low Pt loaded Catalyst loadings have been reduced by 100x in only the last 5 years but need to be life tested
- □ Reduced cell-frame thickness that reduce material requirements
- □ Low-cost carbon for cell-separators/nitrided cell-separators
- □ Low-cost membranes
- □ Adapt low-cost stack designs for high pressure applications

What are the manufacturing issues that need to be addressed to be cost effective?

- □ Reduce labor cost thru new manufacturing techniques
- □ Reduce part count in cells

System efficiency is still key for cost competitiveness!