

Giner, Inc./GES Newton , Ma.

Monjid Hamdan Senior Program Manager May 23, 2011

- •Giner, Inc.: Founded in 1973
- • Giner Electrochemical Systems, LLC (GES): Founded in 2000 with a 30% Ownership by General **Motors**
	- Ш Specializing in development of PEM based electrochemical technology, devices, and systems

Technologies

PEM Electrolyzer Stack Technology *Over 7500 units in the field*

- П Over last 15 years there has been rapid development of high-efficiency PEMbased water electrolyzer stacks for both military and commercial applications
- **Contract** PEM Electrolyzer can generate hydrogen at high or low, balanced or differential pressure
- П PEM Stacks have shown high durability and reliability with over 7500 Giner stacks in field use today
- П Electrolyzers are also used for oxygen generation. PEM electrolyzer stacks are in use on the SeaWolf and Trident submarines
- $\mathcal{L}^{\mathcal{L}}$ Improvements in membrane technology are leading to higher efficiencies
	- T. Efficiencies demonstrated \sim 43.5 kWh/kg H_2

Navy Stacks Compact High-Pressure Design 55-kW Electrolyzer Current Density (2000 A/ft2) 1000 psi H₂/Ambient O₂ No High-Pressure Water Feed Pump or Containment Vessel

Laboratory Stacks 0.05 ft2/Cell1-2 cells/Stack0.3 to 0.6 lpm H₂ Ambient –120 psi H₂ **Ambient O2**

High Pressure Stacks 0.17 ft2/Cell140SCFH H2 (0.34kg/hr) 2000 A/ft²Ambient O₂

500 psi H 2

PEM Electrolyzer Markets

Government – Early

- \blacksquare **US Navy**
	- **Life Support Oxygen Generators**
- **Aerospace / Space Electrolyzers**
	- \Box **Radar Platforms; DARPA and MDA**
	- \Box **Space Exploration; NASA**
- П **RFC Electrolyzers**
	- \Box **Moderate rate 0.3 - 2 kg/hr DOD Backup Power**

Commercial – Near Term Future

- **Grid Stabilization**
- " On-Site" H₂ Generators for car refueling
	- \Box **12 - 20 kg/hr (large rate)**
- **" Renewable" power storage**
	- \Box **> 200 kg/hr (industrial rate)**
	- \Box **> 100,000 kg/day (Centralized Stations)**

Distributed Hydrogen - Today

- П **Analytical Hydrogen**
	- \Box **Analytical labs : 1 - 3 g/hr (low rate)**
- \blacksquare **Industrial Hydrogen**
	- \Box **"High purity" manufacturing processes: 0.1 - 5 kg/hr (Moderate rate)**

On-board Vehicle Electrolyzer System (S-10)

6 kW Electrolyzer 40 SCFH-H₂ (~0.1 kg-H₂/hr) 1500 ASF1250 psi H₂/Ambient O₂ Volume ~ 6 ft³

Electrolyzer NicheApplications

Unmanned Vehicle Applications

12 Cells - 0.17 ft² Cells/Stack6-kW Electrolyzer 40 SCFH-H₂ (~0.1 kg-H₂/hr) High Current Density (1300-1500 A/ft²) 1000 psi H₂/Ambient O₂ No High-Pressure Water Feed Pump or Containment Vessel Volume 12.5ft³

Advantages of PEM Electrolyzer

- \mathbb{R}^3 PEM electrolyzers operate at high current density □ Offsets higher cost/area of PEM electrolyzer
- At given current density PEM electrolyzers have higher stack efficiencies than alkaline systems
- **PEM** differential pressure technology produces H_2 at moderate to high pressure with O_2 production at atmospheric pressure
	- □ \Box Eliminates handling of high-pressure ${\mathsf O}_2$, reducing system cost & complexity, and improving safety
- \mathbb{R}^3 Cost is benefited by advances in PEM fuel cell technology

Optimizing Performance of PEM Electrolyzers

DOE Program

PEM Electrolyzer Incorporating an Advanced Low Cost Membrane

Challenges: Improve efficiencies and reduce capital costs of PEM-electrolyzer stacks & systems

Strategy: PEM electrolysis costs can be dramatically lowered by increasing membrane efficiencies, lowering part counts, increasing component durability, and thru implementation of new manufacturing processes

Analysis: Scaled to high volume production- Forecourt **1500 kg H2/day, 500 units**

Z Electrolyzer Stack **NBOP** □ System Assembly Labor \Box Fixed O&M ■ Feedstock Costs

Electricity/Feedstock is the key cost component in hydrogen generation

DOE Targets: Distributed Water Electrolysis

Program Objectives

- F. Develop and demonstrate advanced low-cost, moderate-pressure PEM water electrolyzer system to meet DOE targets for distributed electrolysis
	- \square Develop high efficiency, low cost membrane
	- □ Develop long-life cell-separator
	- □ Develop lower-cost prototype electrolyzer stack & system
- Fabricate scaled-up stack components (membrane, cell-separators)
- У. Assembly electrolyzer stack/system & evaluate efficiency
- Deliver and Demonstrate prototype electrolyzer system at NREL

Low-Cost Electrolyzer Stack developed in DOE program

High Efficiency Membrane Development

Supported Membranes

■ Superior to PTFE based supports

Alternative Membranes

- \Box Hydrocarbon Membranes
	- □ Bi-Phenyl Sulfone Membrane (BPSH)
	- □ Hydrocarbon/Phosphonate Membrane
	- \Box Inexpensive starting materials
		- **Trade-off between conductivity and** mechanical properties
- *Approach is to optimize membrane ionomer EW and thickness, scale-up fabrication methods and techniques, and improve costs* \Box PFSA (700 EW & 850EW) membranes

Optimizing Performance of PEM Electrolyzers

- $\mathcal{L}_{\mathcal{A}}$ **Performance Milestone** (Mar-2009/Mar-2010)
	- \Box Chemically-Etched (C-) DSM > Nafion ® 1135
- Ξ **C-DSM (1100EW) selected for use in electrolyzer build**
	- \Box Lower cost, ease of fabrication

Performance: Scaled-up DSM & Stack Hardware

Test Conditions: 80° C 320-330 psig Cathode $(H₂)$ 20 psig Anode (H_2O/O_2)

MEA/Hardware:

DSM thickness (3 mil) C(poco)/Ti seperator used in scaled-up 290-cm² HW

- \mathbf{r} **Milestone (Dec-2010): 5-cell Scaled-up Short-Stack**
	- \Box \Box Performance comparable to 160-cm² HW w/DSM > Nafion 1135[®]
	- \Box Electrolyzer Stack utilizes scaled-up 290-cm² cell components (DSM, carbon/titanium, cell-separators)

Membrane Progress: Life Testing

Durability Performance

- Г Completed 1000 Hour Life Test Milestones
	- \Box 1-cell (160-cm²) & 5-cell (290-cm²)
	- \Box 5-cell includes scaled-up components
	- \Box 1.73-1.75V (~88% HHV)
- Г DSM MEA from 5-cell short stack reassembled into a single-cell stack, total operating time = 4100+ hours

Membrane Degradation (Estimated Lifetime)

- $\mathcal{L}_{\mathcal{A}}$ F- ion Release Rate: 3.7 µg/hr (<10 ppb)
- $\mathcal{L}_{\mathcal{A}}$ DSM -1100EW (Stabilized Ionomer): ~55,000 hours

Catalyst Demonstration

12**Successful testing of 3M catalyst,** Pt loadings of 3M anode & cathode catalyst are oneorder magnitude lower than currently in use (~0.10 to 0.15mg Pt/cm²)!

High Durability Cell-Separator

F. **Requirements**

- □ □ Gas-impermeable (separates H₂ and O₂ compartments)
- \Box High electrical conductivity and high surface conductivity
- \Box Resistant to hydrogen embrittlement
- \Box Stable in oxidizing environment
- □ Low-Cost

F. **Legacy Design**

□ Multi-Layer piece consisting of Zr on hydrogen side and Nb on oxygen side

$\mathcal{L}(\mathcal{A})$ **Single or Dual-Layer Ti separators**

- □ Ti subject to hydrogen embrittlement
- \Box Lifetime limited to <5000 hours, depending on pressure and operating conditions

P. **Approach**

- \Box Develop a new low-cost dual-layer structure
	- Evaluate methods of bonding dissimilar metal films
	- Evaluate non-metal substrate with conductive coating

Titanium Cell-Separator with Carbon coating

Cell-Separator Progress

Carbon/Titanium

- \mathbf{r} Carbon/Titanium Cell-Separators Scaled-up to 290-cm² (Milestone Oct-2010)
	- \Box Evaluated in 5-cell short stack for 1000 hours
	- \Box Single cell-separator testing ongoing $(4100+$ hours)
	- □ Cell-Separators fabricated with low porosity carbon
		- POCO Pyrolitic Graphite (Surface Sealed)
		- Low hydrogen uptake (embrittlement)
		- **Life-time estimate > 60,000 hours**
- **College** Analysis
	- \Box C/Ti: No carbon delaminating or loss in thickness
	- \Box Zr/Ti & ZrN/Ti (PVD coatings)
		- **Delamination**
- Г New low-cost carbon materials identified

Stack Progress: Cost Reduction , Efficiency

Stack Progress: Advancements & Cost Reductions

The repeating cell unit comprises 90% of electrolyzer stack cost

(2007-2010)

- ш Increased active area (290cm²)
- П Reduced catalyst loadings

×

- П Reduced Part Count 41 to 16
- ٠ Pressure Pad: Sub-assembly eliminated
- \blacksquare Molded Thermoplastic Cell Frame
- à. Cell-Separators: Replaced Nb/Zr with Carbon/Ti

(2010-2011)

- Frame Thickness reduced (by 30%)
	- П Reduces Cathode & Anode Support Mat'l
- ٠ Reduced Part Count from 16 to 10 Parts/Cell-50% labor reduction
- ٠ Nb and Zr mat'l in Anode & Cathode supports eliminated- up to 98% material cost reduction
- à. DSM MEAs fabricated w/chem-etch supports- 90% cost reduction
- \blacksquare Carbon Steel End Plate (previously S.S.) - 66% material cost reduction

(Future)

- \blacksquare Frame thickness reduced by 90%
- × Carbon Steel Fluid End Plate
- П Poco in carbon/Ti cell-separators replaced w/low-cost carbon (Entegris).
- \blacksquare Further catalyst reductions (3M)
- × Increase Cell-Size
- П Low-Cost Ionomers (Tokuyama)

Stack Progress: Repeating Cell Cost

17•**During DOE funding periods there has been significant cost reductions via new manufacturing techniques** •**Anode Support Material & MEAs (membrane & catalyst) now dominate cost of the electrolyzer stack**

System Progress Controller &Power Supply Teamed with large volume commercial manufacturer (domnick hunter group of **Parker-Hannifin**)**Power Supply Efficiency: 94%** 30kW, 600A, 50V **System Dimensions** Stack Requirement: 23.8kW **Darker** 7.20′ H x 6.6′ L x 7.84′ W**Electrolyzer Stack & Dome (O2 Compartment)**

H2 –Dryer (H2 Compartment)

- H Dryer Efficiency: 96-97%
- H Dual desiccant bed
- П \blacksquare H₂ cooling prior to dryer
- Stack Efficiency: 88%
- Output: 0.5 kg-H₂/hr(-3% dryer),2.0 kg-H2/hr (w/larger Stack & PS)
- Stack Voltage: 47 V (27 Cells @1.75 V/cell,1741mA/cm²)
- Dome can accommodate >90-cell stack
- ■Operating Pressure: H $_{\rm 2}$ 350 psig; O $_{\rm 2}$ atm
- Water Consumption: 5.75 liters/hr
- ■Cooling Requirement: 3.3 kW

System Progress: Safety

- П Failure Modes and Effects Analysis (FMEA) -Analysis indicates highest degree of safety is to enclose stack
- П GES designed a Dome to enclose stack
	- \Box Satisfies Codes Pertinent to Hydrogen Refueling Systems
	- \Box Dome design modified for lower cost
	- \Box Pressurized dome: reinforces stack during high pressure operation (future study)
	- п Reviewed National & International Codes & Standards

 \Box System design improvements and the use of a Dome eliminate the highest severity cases related to hydrogen ignition (Class A), & electrocution (Class B)

Don't Forget about the SAFETY Codes!

Electrolyzer systems must follow specific codes to become commercially viable

Electrolyzer VehicleSystem Components Systems Refueling IEC 60079-10-1: CSA America HGV 4.1-**2009:ISO/DIS 22734-2:**Explosive Atmospheres, **Hydrogen Generators Using** Hydrogen Dispensing Systems **Water Electrolysis Process** Classification of Areas FPA **ISO 4126-1,-2: NFPA 52-2010, Chapter 9: Safety Devices for Protection GH2 Compression, Gas Processing, Against Excessive Pressure: Storage, and Dispensing Systems Valves & Rupture Disks** CODE COUNCIL? Eventual UL and CSA **International Fire Code Section 2209:CSA America HGV 4.7-2009:** Versions of **ISO/DIS 22734-2 Automatic Valves for use in** Hydrogen Motor Fuel Dispensing and Generation Facilities**Gaseous Hydrogen Fueling StationsSAE J2600: SAE TIR J2601:Compressed Hydrogen Compressed Hydrogen Fueling Receptacles Fueling Protocol**

Codes Pertinent to Hydrogen Generators 20

Projected H2 Cost

Specific Item Cost Calculation **Hydrogen Production Cost Contribution**

- \blacksquare Design capacity: 1500 kg $H₂/day$
- $\mathcal{L}_{\mathcal{A}}$ Assume large scale production- costs for 500th unit
- $\mathcal{L}_{\mathcal{A}}$ Assume multiple stacks/unit

 $\mathcal{L}_{\mathcal{A}}$

- \Box Low-cost materials and component manufacturing
- 333 psig operation. H_2 compressed to 6250 psig
- $\mathcal{L}_{\mathcal{A}}$ Operating Capacity Factor: 70%
- \mathbf{r} Industrial electricity at \$0.039/kWhr

Cost of Electrolysis is Becoming Competitive

Summary

\Box **Demonstrated membrane reproducibility and durability**

- **Demonstrated DSM membrane performance better than that of Nafion 1135 at 80°C**
- Demonstrate DSM membrane lifetime at 80°C for 1000 hours
	- \Box Single-cell (160cm²), 5-Cell (290cm²)
	- □ Single-cell (290cm²) life test ongoing 4100+ hours

\Box **Cell Separator Development:**

- Demonstrated performance comparable to dual-layer Ti separator in 160-cm² & 290-cm² electrolyzer
- Demonstrated significantly reduced hydrogen embrittlement with carbon/Ti separators
	- \Box Expected cell-separator lifetime in the range > 60,000 hours

\Box **Scaled-Up Stack Design**

- □ Significant progress made in stack cost-reduction (cell-components, membrane, & catalyst)
	- □ New manufacturing techniques used to reduce labor cost
	- $\Box~$ Commercialized stack (orders have been delivered)
- □ Further reductions in membrane (material/labor) costs are required

\Box **System Development:**

 \blacksquare High efficient H₂-dryer demonstrated

Challenges

Market

Is this technology feasible for cost effective storage of renewable electricity?

- *Dependent on scale*
- *Systems need to be demonstrated*
- *Industrial collaborations needed to promote technology*
	- PEM electrolyzers have been purchased for grid stabilization, industrial and analytical H2 production, and military use. Vehicle refueling market needs to be established.

Technical

What are the materials and systems barriers to developing this technology?

- □ New low Pt loaded Catalyst loadings have been reduced by 100x in only *the last 5 years but need to be life tested*
- *Reduced cell-frame thickness that reduce material requirements*
- *Low-cost carbon for cell-separators/nitrided cell-separators*
- *Low-cost membranes*
- □ *Adapt low-cost stack designs for high pressure applications*

What are the manufacturing issues that need to be addressed to be cost effective?

- *Reduce labor cost thru new manufacturing techniques*
- *Reduce part count in cells*

System efficiency is still key for cost competitiveness!