PROCEEDINGS NATIONAL HYDROGEN ENERGY ROADMAP WORKSHOP

WASHINGTON, DC, APRIL 2-3, 2002

PROCEEDINGS

NATIONAL HYDROGEN ENERGY ROADMAP WORKSHOP

Table of Contents

INTRODUCTION

1. OPENING PLENARY SESSION	1
2. HYDROGEN PRODUCTION BREAKOUT SESSION	5
3. HYDROGEN DELIVERY BREAKOUT SESSION	12
4. HYDROGEN STORAGE BREAKOUT SESSION	20
5. Hydrogen Energy Conversion Breakout Session	27
6. HYDROGEN APPLICATIONS BREAKOUT SESSION	33
7. HYDROGEN OUTREACH AND EDUCATION BREAKOUT SESSION	41
8. HYDROGEN SYSTEMS INTEGRATION BREAKOUT SESSION	50
9. CLOSING PLENARY SESSION	56
10.LIST OF PARTICIPANTS	64

i

INTRODUCTION

On April 2-3, 2002, more than 200 participants representing hydrogen energy industries, academia, environmental organizations, federal and state government agencies, and National Laboratories met for a National Hydrogen Energy Roadmap Workshop in Washington, DC. (A list of the participants can be found at the end of this document.) During the workshop they discussed the actions that need to be taken in order to reach the hydrogen vision that was identified during the National Hydrogen Vision Meeting in November 2001. The intent was to identify the most important barriers

and needs that should to be addressed in order to achieve the vision, the time frames for the top priority research and development and other efforts, and the respective roles of industry, government, universities, and National Laboratories in dealing with these issues.

This document is a summary of the proceedings from that meeting. It captures the comments and ideas that were exchanged, and summarizes the major themes that were expressed throughout the workshop. There will be a forthcoming national roadmap document that will be released shortly.

SECTION **1** OPENING PLENARY SESSION

Welcome and Opening Remarks

Robert Dixon, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy

- Welcome to the National Hydrogen Roadmap workshop. We appreciate the time you've taken out of your busy schedules to be here with us today. Thank you.
- I would like to introduce Under Secretary of Energy Robert G. Card. Mr. Card is going to provide some opening remarks. Mr. Card attended the National Hydrogen Vision Meeting held in November and is a strong supporter of our efforts in this arena.

Robert Card, Under Secretary, U.S. Department of Energy

- Welcome. Thank you in advance for your hard work and participation in this Roadmap meeting.
- Science and energy research functions are driven by this process...not paper pushing.
- Since the National Hydrogen Vision Meeting in November, we have announced the FreedomCAR initiative.
- Since the November meeting, I have become more familiar with the technology; I recently had the opportunity to visit a hydrogen pipeline.

1

- We need to keep the investment criteria in mind. We are now beginning the FY04 budgeting process. We need to ask the following questions: 1) How many tons of carbon are we going to displace? What will be the cost?
- When considering hydrogen, we need to keep price competitiveness in mind. We must also remember that hydrogen is a long-term resource.
- Current issues for the Administration include climate change, energy supply, and energy security. In addition, there are many other budget issues under consideration.
- The outputs of the November Vision Meeting were instrumental in our decision to launch the FreedomCAR initiative. I would like to see something similar to the FreedomCAR initiative come out of this National Hydrogen Energy Roadmap Workshop.

Legislative Update on Hydrogen-related Legislation

Jeff Serfass, President, National Hydrogen Association

- Hydrogen Future Act Amendments to Matsunaga Hydrogen R, D&D Act of 1990.
- House Energy Bill: HR 4, §2205, Hydrogen Research and Development, \$40-60 million for R&D from 2002-2006, \$20-40 million for demonstrations; advisory committee by National Academies of Science and Engineering
- Senate Energy Bill: Energy Policy Act of 2002, Title XII, Subtitle B, §1223, Hydrogen R&D, \$65-80 million for R&D from 2003-2006, \$25-40 million for fuel cell and hydrogen demonstrations; includes E&O, villages and foreign economic development; interagency task force to plan for development and demonstrations in Federal buildings and buses/fleets
- Agriculture bill S. 1731: Energy Title, §388H, Hydrogen and Fuel Cell Technologies Program; includes demonstration of hydrogen technologies and fuel cell technologies in farm, ranch, and rural applications; includes studies of technical, environmental, and economic viability in farm, ranch, and rural applications, of innovative hydrogen and fuel cell technologies not ready for demonstration; \$5 million per year through 2006
- Energy Tax Incentives Act of 2002 S. 1979: Title II, Alternative Motor Vehicles and Fuels Incentives, \$4 thousand for fuel cell cars, \$10-40 thousand for larger vehicles, economy adders, \$1-30 thousand for refueling property
- More Fuel Cell Titles: Energy Bills—Fuel Cell Bus Development and Demonstration Program, Clean Green School Bus Act, Alternative Fuel Vehicle Act, Federal Cost Sharing in Demos and Fuel Infrastructure
- 2003 Appropriations?: EE Hydrogen Research \$39.9 million, + 37%, EE Transportation \$275.7 million, -9% with \$150 million redirection from FreedomCAR, Fuel Cell research throughout DOE—EE Transportation \$50 million, EE Buildings \$75. million, EE Power Generation \$49.5 million (-15%), FE Carbon Sequestration \$54 million, +67%, EE Biomass, and other Renewables

Presentation on the Integration of Activities at the Department of Energy

Steve Chalk, Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy

- We need a "business case" for expanding the use of hydrogen.
- The Department's current research on hydrogen production, storage, conversion, etc. will impact the next 20 years
- I'm hoping that this and other meetings will help guide us in the right directions.

Presentations on the Purpose and Goals of the Vision and Roadmap Process, and this Workshop

Tex Wilkins, Roadmap Leader, U.S. Department of Energy

- We have more than 200 people here today representing about 100 organizations.
- We all need roadmaps. For example, the Declaration of Independence was a roadmap that was written more than 200 years ago.
- As you know, the Hydrogen Vision meeting was held in November. Fifty-three people attended that meeting, and out of it came the Hydrogen Vision document.
- Today we have six areas that we will be focusing on: production, delivery, storage, energy conversion, applications, and public education and outreach. There will also be an integration group whose job it will be to incorporate all of the important ideas from each of the six areas.
- Roadmap chapters will ultimately be written by industry and university representatives. We envision that each chapter will be 4-5 pages and hope for a good draft by the end of May and a final draft sometime in June.
- Now I would like to introduce the roadmap leaders:
 - Energy Conversion Mike Davis, Avista Labs
 - Delivery Art Katsaros, Air Products & Chemicals
 - Applications Frank Balog, Ford Motor Company
 - Storage Alan Niedzwiecki, Quantum Technologies
 - Production Gene Nemanich, Chevron Texaco Technology Ventures
 - Public Education and Outreach Jeff Serfass, National Hydrogen Association
 - Systems Integration Joan Ogden, Princeton University

Rich Scheer, Energetics, Inc.

- We really appreciate your being here and we've developed a facilitation game plan that should keep you very busy over the next two days.
- Recently there have been several U.S. Department of Energy-sponsored meetings related to H₂ and fuel cells: the Hydrogen Vision meeting, the Fuel Cell Report to Congress meeting, and the Fuel Cells for Building meetings. In your deliberations over the next several days it is important that you try to tie all of these events together. Many of you were involved in those other meetings. Please remember that you are not here to "reinvent the wheel."

SECTION 2

HYDROGEN PRODUCTION BREAKOUT SESSION

- Barriers: What are the barriers that interfere most with achieving the vision?
- **Needs:** What are the most important needs to undertake between now and 2030 to address the barriers and achieve the vision?
- **Top needs and next steps:** What are the top priority needs, including their milestones and dates, primary funding entities, and next steps to addressing them?

Participants:	
NAME	ORGANIZATION
Mark Ackiewicz	Technology & Management Services, Inc.
Arvind Atreya	University of Michigan
David Bartine	Kennedy Space Center
Gottfried Besenbruch	General Atomics
Mel Buckner	Savannah River Technology Center
Wilson Chu	Johnson Mathey Fuel Cells
Anthony Cugini	National Energy Technology Laboratory
Gregory Dolan	Methanol Institute
Kellye Eversole	Eversole Associates
Alexander Fridman	University of Illinois
Leo Grassilli	Department of the Navy, ASN (I&E)
Neville Holt	Electric Power Research Institute
Alan Johnson	ZECA Corporation
Dan Keuter	Entergy Nuclear, Inc.
Joe Klimek	Startech Environmental Corporation
Ravi Kumar	General Electric
Jay Laskin	Teledyne Energy Ssytems, Inc.
William Lewis	ExxonMobil Refining & Supply Co.

NAME	ORGANIZATION
Ted Lima	Hamilton Sundstrand
Gary McDow	Air Liquide America
Gene Nemanich	ChevronTexaco Technology Ventures
Edson Ng	QuestAir Tehnologies, Inc.
Michael Nicklas	Innovative Design
Richard Noceti	National Energy Technology Laboratory
Manuel Pacheco	PDVSA-Citgo
Ken Schultz	General Atomics
Surindar Singh	Alberta Energy Research Institute
Andrew Stuart	Stuart Energy Systems
Chris Sutton	Air Products & Chemicals Inc.
Satish Tamhankar	BOC Group
David Tsay	Ztek Corporation, West Coast Office
John Turner	National Renewable Energy Laboratory
Robert Walker	Wexler & Walker Public Policy Associates
Kyle Wetzel	K. Wetzel & Co. Inc.

FACILITATOR: Ross Brindle, Energetics, Inc. (assisted by Tracy Carole)

FEEDSTOCKS	PERCEPTION	POLICY	MARKETS	TECHNOLOGIES	Соѕт
 Finite amount of fossil fuels SMR at large scale will deplete North American natural gas resources GOOO Feedstock impurities Limited availability of energy source materials (relative lack of renewables and abundance of non-renewables) 	 Public perception and policy discouraging anything nuclear leads to restrictive regulations COOOOO Limited public perception and acceptance of hydrogen as safe limits sites for hydrogen production CO Lack of understanding of why hydrogen research should be funded with public funds CO Promising too much without results has eroded credibility 	 Lack of joint government- industry efforts to demonstrate cost-effective hydrogen production OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	 Lack of market pull OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	 Lack of cost-effective, environmentally benign carbon sequestration methods OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	 Hydrogen production is not profitable OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

RD&D NEEDS – PRODUCTION (1 of 2) (♥ = Most Critical to Realizing the Vision; ◆ Most Critical Near-Term Need)

Time Frame: (N =2002 = -2010; M = 2010-2020; L = 2020-2030+)

Lead (capital letters) and Supporting (lower-case letters) Roles: (I = Industry; G = Government; U = Universities; NL = National Labs)

ELECTROLYSIS	THERMAL CYCLES	CARBON/WATER	Advanced Production Techniques	CROSSCUTTING PROCESS TECHNOLOGIES
 Higher efficiency, lower cost electrolysis (N; I) ○○○○○○○○ Develop 900°C electrodes and membranes for use with present nuclear off-peak ◆ Develop techniques to use seawater as feedstock for electrolysis (desalination or direct feed) 	 Demonstrate hydrogen production from nuclear power by thermochemical process OOOOOOOOOOOOOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	 Develop economic, scalable carbon capture and sequestration techniques (N-L; I, nl, u, g) COOCO reduce cost of CO2 capture by 2/3 or more COOCO membranes, catalysts, mineral carbonation, and pilots are needed COOCO ♦ Distributed production via small-scale reformers (N; I, U, NL, g) A ● ● ● ● ● Improved and integrated refinery processes for hydrogen production (N-L; I) COOCO ● ● Develop improved gasification processes (N; I, U, NL, g) ● ● ● ● fuel flexibility for feedstocks O O O ● ● Hot gas clean-up for coal Develop methods for higher oxygen concentration to influence CO₂ purity during carbon sequestration 	 Research on hi-temperature direct conversion of water to hydrogen (thermal, solar, electric) – need rapid separation technologies on nano-scale time frames (M-L; NL, U, g) ○○○○○○○○○○○○○○○○○○○● More research into advanced "carbon-free" production processes ○○○○○○○○○○○○○○○● genetic engineering of biological-based photolytic processes ○ Develop lower-cost materials with longer lifetimes for semiconductor-based photolytic processes ○ develop nanotechnology production and storage capabilities ○○○ Develop and demonstrate methods to produce hydrogen by heat directly nuclear – radiolysis solar – plasma 	 Improved separation and purification methods and materials OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

RD&D NEEDS – PRODUCTION (2 of 2) (☉ = Most Critical to Realizing the Vision; ◆ = Most Critical Near-Term Need) Time Frame: (N = 2002-2010; M = 2010-2020; L = 2020-2030+)

Lead (capital letters) and Supporting (lower-case letters) Roles: (I = Industry; G = Government; U = Universities; NL = National Labs)

Hybrids	DEMONSTRATIONS	POLICY
 Capture synergies between products and technologies 2222 plasma processes and plasma catalytic processes hybrid fuel sources Innovative technologies for hydrogen production to improve cost and availability (cross-fertilization of low-cost technology to create hybrid systems) Couple hydrogen production with other system uses (e.g., cogeneration) 2 	 Technology demonstration of processes that can show the potential for technical and economic viability (N; I, G, u, nl) GOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	 Implement the national vision and garner government support for the hydrogen economy by 2020 (N; G, I) ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

TOP-PRIORITY NEED	BRIEF DESCRIPTION OF THE NEED	KEY MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	NEXT STEPS
• Technical demonstration by process that can show the potential for technical and economic viability	 Codes and standards that apply to all production processes, including safety Demonstration projects to take place in public venues to promote public acceptance 	 2 years: establish codes and standards across all production techniques 5 years: at least one demonstration "fair" in each major metro area 	Industry, related industrial organizationsGovernment co-funding	 Establish venue for government and industry to work together Begin working with local governments to break down barriers to implementing demonstration projects
• Develop economic, scaleable carbon capture and sequestration techniques	 Cost reduction for capture New methods for low- concentration capture Demonstration Validation for performance 	 2007: Demonstrate geological sequestration 2010: Demonstrate mineral sequestration 2010: Demonstrate three technologies 2010: Reduce cost of high-concentration capture by 50% 2020: Consider demonstrating ocean sequestration 2030: Demonstrate low-concentration capture 	 Government – DOE support, low- concentration capture Industry – high- concentration capture Sequestration – Work: NL:I 50:50; Funding: G:I 75:25 High-concentration capture – work: NL:I 50:50; Funding: I:G 60:40 Low-concentration capture – work: NL:U 50:50; Funding: G:I 75:25 	Conduct demonstrations of sequestration techniques
• Develop improved separation and purification methods and materials	• Economical gas separation technologies that are appropriate to hydrogen application and production method	 2007: demonstrate hydrogen separation from mixed gas at 30% below current cost 2007: demonstrate oxygen separation from air at 30% below current cost 2015: demonstrate both at 50% lower cost 	 Federal 80:20 for long- term research; 50:50 for demonstrations Private, as desired 	 Designate "gas separations technologies" as a separate program area equivalent in stature to hydrogen generation Define performance targets for each application and production method

NINE MOST WANTED - PRODUCTION

TOP-PRIORITY NEED	BRIEF DESCRIPTION OF THE NEED	Key MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	NEXT STEPS
Demonstrate hydrogen production from nuclear power by thermochemical process	 Utilities and refineries are risk-adverse. We need technical demonstration that thermochemical hydrogen production really works Temperature greater than 800° C, integrated loop, continuous operation (greater than weeks) 	 2005: integrated laboratory loop of S-I cycle (\$6M) 2007: measure kinetics, materials, for Ca-Br cycle (\$2M) 2004: chemical data for HI-I2-H₂O equilibrium (\$1M) 2010: pilot plant (100 m3/hr) non- nuclear simulation (\$30-50M) 2012: pilot plant using NP 2010 (\$20M) 	 2002-2010: DOE and some industry support 2010-2012: (using 5% of NP 2010) 50:50 industry: government 2012-2015 (using 100% NP 2010): 50:50 cost share 2015+: Industry 	
 Advanced direct production techniques biological photolytic nanotechnology nuclear solar hi-temperature 	 Biological (dark process using biomass feedstock) – identify organisms for doing conversion, genomics for improved feedstock and microbes Biological (solar) – genomics to understand the water splitting reaction center and the efficiency of conversion Hi-temp direct (solar or nuclear) – separation technology fro hydrogen/oxygen separation at high temperatures (nanotechnology membranes) Photolytic (semiconductor-based) – identification of materials for longer lifetimes (corrosion); quantum dots (nanotech) 	 Biological – 2007: basic sequencing; 2020; functional control Hi-temp – 2012: develop low-cost membranes for separation Photolytic – 2012: materials identification 	 Biological – NIH, DOE, NSF, USDA Hi-temp – DOE, NSF, Industry, DOC Photolytic – DOE, NSF, Industry 	 Prioritize research needs by DOE, NSF, etc. Support basic research to develop computational capabilities in support of these technologies
Develop improved gasification processes; enable fuel flexibility for feedstock	 Cheaper oxygen, integration Mixed feedstock handling (e.g., biomass, potcoke) High-efficiency integration (heat management, IGCC) Cheaper syngas production 	 2005: feedstock flexibility 2005: optimization for cost reduction 2005-2010: system integration 2010: cheaper oxygen demonstration 2020: integration with carbon sequestration (total system) 	Government-industry cost share	Continue R&D with expanded scope (include other feedstocks)

NINE MOST WANTED - PRODUCTION

TOP-PRIORITY NEED	BRIEF DESCRIPTION OF THE NEED	Key MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	NEXT STEPS
• Integrated environmental policy to reward non- polluters and/or tax polluters based on cap and trade system	 Integrated environmental policy (electric utilities, transportation, industrial, commercial, residential) Set national cap for major pollutants: NOx, SOx, CO₂, etc., issue credits to match caps, and allow trading of credits 	 2004: national legislation is in place 2010: legislation is implemented 	• This policy can be a fund-generator. Funds collected can be directed to support energy R&D that reduced pollution, including hydrogen infrastructure	• Draft legislation
Higher-efficiency, lower-cost electrolysis	 Electrolysis improvements include: lower life-cycle hydrogen costs for application-specific uses considering the supply and source of electricity by improving efficiency, capital costs, and maintenance, etc. of complete system 	 By 2010, for each target application: improve efficiency improve capital cost improve total life-cycle costs optimize 	 Primary funding by industry Goal-setting study by government assist 	 For the major use/applications (e.g., transportation, stationary power, etc.) establish acceptable value of hydrogen Establish price/value goals for electrolysis Based on above, identify methods of achieving price and thus improvement needed By 2002
Distributed production using small-scale reformers	 Reduce cost Improve reliability and safety Develop codes and standards Fuel flexibility Materials development Systems integration 	 2003: codes and standards in place 2005: low-cost materials developed 2005: demo multiple hydrogen refueling systems 2007: demo multiple hydrogen energy parks 2007: fuel flexible reformer 	 Federal and state government Industry Incentives for high- efficiency and lower polluting technologies 	 Support FreedomCAR Integrate with stationary power (hydrogen energy park) Flow down customer requirements to subsystem specs Force introduction of high-efficiency, low-pollution systems

NINE MOST WANTED - PRODUCTION

SECTION 3

HYDROGEN DELIVERY BREAKOUT SESSION

Participants:

- Barriers: What are the scientific, engineering, environmental, institutional, economic, and market delivery barriers that interfere most with achieving the vision?
- Needs: What are the most important needs including research and development, demonstrations, analysis, policy, codes and standards, and outreach to address the barriers?
- **Top needs and entity roles:** What are the top needs, and which entities will address those needs?
- Next steps: What are the top priority needs including their descriptions, key milestones and dates, primary funding entities, and next steps?

NAME	ORGANIZATION
Art Katsaros	Air Products
Neil Rossmeissl	U.S. Department of Energy
Rodney Carlisle	History Associates Incorporated
Helena Chum	NREL/HTAP
Ed Danieli	Praxair, Inc.
Bob Dempsey	Chevron Texaco Technology Ventures
Steve Fan	Ford
Rob Friedland	Proton Energy Systems
Bob Hawsey	ORNL
George Kervitsky	SENTECH
Ken Koyama	California Energy Commission
Mike Leister	Marathon Ashland Petroleum
Steve Melancon	Entergy Nuclear
Karen Miller	National Hydrogen Association
Marianne Mintz	Argonne National Laboratory
Jim Ohi	National Renewable Energy Laboratory
Venki Raman	Air Products
Paul B. Scott	Stuart Energy USA
Prentiss Searles	American Petroleum Institute
Brad Smith	Shell Hydrogen
Jeff Staser	Denali Commission (Alaska)
Sandy Thomas	H2Gen Innovations, Inc.
Gene Whitney	Office of Science & Technology Policy

FACILITATOR: Ed Skolnik, Energetics, Inc. (assisted by Christina TerMaath)

HYDROGEN DELIVERY BARRIERS

(= Number of Votes) Pertains to (P = pipelines, F = fueling stations, O= other, e.g., barge, rail, truck)

SCIENTIFIC	ENGINEERING	ENVIRONMENTAL	INSTITUTIONAL	ECONOMIC	MARKET
 Strategy on carrier media (P, F, O) Cost effective means of converting good H₂ carrier (methanol, ammonia) to H₂ Multiple infrastructures 	Technical solutions to H2 dispensing are not mature (F)	Lack of full social costing of alternatives (P, F, O)	 Codes and standards don't include H₂ (P, F, O) No clear definition of safety criteria National and international lack of harmonization 	 Transitional strategy missing (P, F, O) Chicken and egg dilemma, economics for fueling depend on volume Today's dollars, funding for 2020 projects Lack of investment strategy that matches developing market 	Customer expectations (P, O, F)
Lack of life cycle environmental impact to all options (P, F, O)	 Design criteria (P, F, O) A A A Materials Multi-gas usage Ability to engineer refueling facility to be self-serve Compatibility 	Liquefaction is energy intensive (O)	Community acceptance (P, F, O) • • • • Local interests vs. state/national	Cost of H2 technologies higher than current technologies (P, F, O) ◆ ◆ ◆ ◆ ◆ ◆	Match between demand and production (P, F, O) ♦ ♦ ♦
 Proprietary aspects (P, F, O) ◆ Materials data not published 	 Firm understanding of required purity (P, F, O) ♦ Fuel cells require pure H2, current fuels use mercaptans 	Environmental concerns with fossil carbon-based feedstock (P, F, O)	Conflicting regulatory jurisdictions (P, F, O) ♦ ♦	Risk mitigation (P, F, O) ★ ★ ★ ★ ↓ Investment financial assurance	What are the final delivery points (P) ◆
	CNG not typically at service station (P, F)		Lack of experience and knowledge for operation and maintenance of H ₂ technologies (F) $\blacklozenge \blacklozenge$	Access to affordable capital (P) ♦ ♦ ♦	Defined value for carbon (P, F, O) ◆
	What is the key H2 application (P, F, O) Design requirements		Political resistance to mandates (P, F, O) ♦	Liquid H ₂ (F, O) ♦♦ Cost to liquefy Transport/storage cost	Lack of knowledge for multi-gas pipelines (P) ◆ • Market/cost?
			 Codes/permits (O) ◆ Access to roads Safety perception H₂ venting during transportation 	Current weight and capacity of tube trailers (O) Compressed hydrogen has low energy density Poor economics for transport over long distance	Storage for local distribution (bulk) (P, F, O)
			Right of way (P) ◆ Lack of national management structure (P) ◆		

HYDROGEN DELIVERY NEEDS

(**•** = Number of Votes) Pertains to (P = pipelines, F = fueling stations, O= other, e.g., barge, rail, truck)

R&D	DEMONSTRATIONS	ANALYSIS	POLICY	CODES & STANDARDS	OUTREACH
 Tech validation to address R&D (F) ♦ ♦ ● High pressure breakaway Sensors Fueling protocol Robotic refueling Compressors Onsite production Establish public/private partnerships on refueling system/components 	 Need government sponsored projects in H₂ infrastructure components, e.g., more efficient/economical compressors (P, F, O) A A A A A A A A A A A A A A A A A A A	Environmental- establish consensus on total costs of fuel alternatives (F, O)	Improve financial incentives (P, F, O)	 Support codes and standards development Harmonize codes and standards Technical expertise Data access Test and evaluation Assure cost effective standards Installation standards Assure system compatibility 	 Public outreach materials (F) ♦ ♦ ♦ ♦ Branding/marketing Education Novel benefits
 Study of setback requirements (verification of siting request) (F) ♦ ♦ Liquid, gaseous, onsite production, onsite storage 	Develop demo roll-out plan (start with several states) to establish delivery (P, O) ******	Transition strategy- quantify the vision (P, F, O) ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ • Need milestones (e.g., economic, performance, efficiency)	Manage the transition in an integrated way at federal, state and local levels (P, F, O) ♦ ♦	Establish national hydrogen building code (P, F, O)	Better access to existing info (P, F, O) ♦ ♦ ♦
R&D on filter for hydrogen delivery to fuel cell (P, F, O) ♦ ♦	Prototype wind-hydrogen pipeline to cities (P) ♦ ♦	Develop options that address all potential delivery points (P, F, O)	Guarantee demand through contractual arrangements with OEMs (P, F, O) \blacklozenge		Societal dialog on need for hydrogen (P, F, O) ♦ ♦
Develop benign additives(s) for odor, flame visibility (P, F, O) ♦ ♦	Design, develop hydrogen planned communities (P, F, O) ♦ ♦	Analyze current infrastructure suitability for future use (P, F, O)	Enact a carbon tax $(P, F, O) \blacklozenge \blacklozenge$		Publicizing dissipation risks (F) ♦ ♦
R&D for new pipelines for liquid hydrogen and electricity together (P) ♦ ♦	Enable existing hydrogen pipeline to support demonstrations similar to California Fuel Cell Partnership (P) ◆	Create a viable, long- term financial model to profitability (P, F, O) ♦ ♦	Legislation to expand natural gas right-of-way to hydrogen (P) ◆		
Utilize new storage technology as means for hydrogen delivery (O) ♦	 Design criteria (P, F, O) Merge design standards, knowledge, experience of stakeholders and apply to demos 	Assess cost of maintaining existing energy infrastructure (P F, O) ♦ ♦	Federal standard accounting practice to include social, health, and environmental costs (P, F, O) ◆		

R&D	DEMONSTRATIONS	ANALYSIS	POLICY	CODES & STANDARDS	OUTREACH
			(P, F, O) ♦		
Study co-mingling	Customer expectations (F)	Systems analysis of each	Expand/upgrade		
hazards with other fuels	 Need "community 	media for different	natural gas supply		
(F) ♦	outreach" demo (e.g.,	distances and regions (P,	infrastructure (P, F,		
	public transportation, rental cars, etc.)	F, O) ♦ ♦	0)		
Need more efficient and	Tental cars, etc.)	Need stakes in the			
economical transportation		ground about what the			
containers (F, O) \blacklozenge		technology is (P, F, O)			
		 ♦ 			
		 Technical 			
		milestones so that			
		fuel delivery and			
		conversion			
		technologies			
		progress together			
Develop and install		Design hydrogen			
intelligent sensor system		transmission and			
for leaks (P, F, O)		distribution system (P,			
		F, O) ♦ ■ National level			
		Probabilistic risk			
		assessment of systems			
		(P, F, O)			
		Assess the potential			
		impact of existing			
		infrastructure stranded			
		assets (P, F, O)			
		Realistic analysis of			
		demand and production			
		(P, F, O)			
		Conduct geographic			
		information systems			
		analysis for pipeline planning (P)			
		Complete design			
		evaluation of existing			
		pipelines (P)			
	L	pipeinies (1)	1		1

HYDROGEN DELIVERY TOP NEEDS

(* = Number of Votes) Pertains to P = pipelines, F = fueling stations, O= other, e.g., barge, rail, truck

I = Industry, G = Government, N = National labs, U = Universities, A = Association

(Capital letters: lead, Lower case letters: contributors)

NEED	Role	EXPECTED TO OCCUR BY
Analyze current infrastructure suitability for future use (P, F, O) ◆ ◆ ◆ ◆ ◆ ◆ ◆	I/G	Prior to 2005
Environmental- establish consensus on total costs of fuel alternatives (F, O) $\bullet \bullet \bullet$	G, n, u	2005
Better access to existing info (P, F, O) ♦ ♦ ♦	G, I, u, n	2005
Transition strategy- quantify the vision, need milestones (e.g., economic, performance, efficiency) (P, F, O)	I/G, n, u	2010
Improve financial incentives (P, F, O) ****** Tax, R&D, demos, govt. as a customer	G	2010
 Tech validation to address R&D (F) ◆ ◆ ◆ High pressure breakaway, sensors, fueling protocol, robotic refueling, compressors, onsite production, establish public/private partnerships on refueling system/components 	I, n	2010
Public outreach materials (F) ◆ ◆ ◆ ◆ ■ Branding/marketing, education, novel benefits	I (A), g, u, n	2010
 Support codes and standards development ***********************************	I (A), g	2010
Develop options that address all potential delivery points (P, F, O) + + + + + +	Ι	2020
 Need government sponsored projects in the infrastructure components, e.g., more efficient/economical compressors (P, F, O) ***********************************	G/I	2005 Develop demo roll-out plan 2010 Design feasibility 2030 Commercialization

HYDROGEN DELIVERY NEXT STEPS

(= Number of Votes)

P = pipelines, **F** = fueling stations, **O**= other I = Industry, G = Government, N = National labs, U = Universities

TOP VOTE-GETTING NEEDS	NEED DESCRIPTION	KEY MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	NEXT STEPS
 Support codes and standards development Harmonize codes and standards, technical expertise, data access, test and evaluation, installation standards, assure costeffective standards, assure system compatibility 	A uniform set of building codes and equipment standards that can be adopted by all jurisdictions for delivery systems	 ICE code hearing- attendance, vote to adopt (April 2002) NGVC standards development (May 2003) NFQA hydrogen code development (May 2003) ISO/SAE code development (drafts)- tanks, connectors, refueling stations (June 2004) 	 Government agencies- DOE, DOT, Commerce Industry- UL certification, National Evaluation Service- product testing 	 Issue cooperative agreement to NGVC for standards Organization meeting at WHEC on harmonizing international activities on codes and standards Produce codes and standards roadmap- entities, mechanisms for collaboration, information clearinghouse
 Need govt. sponsored projects in hydrogen infrastructure components, e.g., more efficient/economical compressors-include integration of components, govt. pilot testing of refueling (similar to CNG) ••••••••••••• Develop demo roll-out plan (start with several states) to establish delivery •••••• 	Enhance infrastructure development through demonstrations that showcase and prove out different technologies and components	 Gather key stakeholders from gov/industry to develop demo plan (Dec. 2002) Gap analysis on technologies to demonstrate (June 2003) Develop action plans (Dec 2003) Enact plans and funding (ongoing) Lessons learned and technology feedback (ongoing) Build on lessons learned, improve and expand demos (2020) 	 Federal government, State government Industry 	Neil Rossmeissl to set up government/industry meeting on delivery demo plan
Establish consensus on total costs of fuel alternatives * * * * * * * *	Need to establish consensus data sets and modeling techniques that will enable the most up-to-date analyses of the total costs (direct and external) of candidate fuels.	 Enumerate fuels (2002) Identify direct costs and who pays (2002) Identify indirect/external costs and who pays (2002) Assemble credible group and develop model (2003) Industry and government review (2004) Use outreach program to sell results (2005) 	Government	 Identify primary leadership-DOE Steve Chalk Name interagency and industry work group (3Q, 2002) Convene working group (4Q, 2002)
 Improve financial incentives A A A A A A A A Tax, RYD, demos, govt. as a customer 	Improve financial incentives for delivering hydrogen to markets. This can include tax incentives, federal, state, and local incentives for industry to invest in R&D activities and demonstrations	 Tax credits (2002-2010) Govt. purchase fleets (2005) CRADAs for R&D (2002-ongoing) RFPs for demos (2002-ongoing) 	Federal govt. fundingState tax relief	 Federal govt. issue CRADAs and RFPs Federal govt. establish fleet vehicle programs in conjunction with OEMs and fuel suppliers Industry continue to advocate tax credits

TOP VOTE-GETTING NEEDS	NEED DESCRIPTION	Key MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	NEXT STEPS
	 Govt. funding and tax credits/incentives- federal, state, and local incentives, including R&D Govt. initiate program to purchase hydrogen technologies and implement delivery Implement govt. hydrogen fleet vehicle program to include refueling Govt. issue RFPs on demos for various hydrogen delivery methods (CRADAs, IP concessions, licensing) 			• Federal govt. implement tax credits
 Transition strategy + + + + + + Quantify the vision Need milestones (e.g., economic, performance, efficiency) 	Gaining consensus between industry, government, academia on roadmap for transition to hydrogen economy (Delivery of hydrogen)- this should include R&D needs such as identified in this workshop	 DOE roadmap workshop (2002) Circulate draft widely (2002) Consider existing milestone data (e.g., economic, performance, efficiency) such as NHA Hydrogen Commercialization Plan, NHA Implementation Plan, HTAP reports, multiyear hydrogen R&D plan, etc. synthesized- prior to finalizing roadmap 	 Federal govt. (DOE) hosts workshop(s) Industry through participation, association consensus, input Federal govt. (DOE) funds facilitators 	 Collect and synthesize hydrogen roadmaps and plans for quantifying the vision (DOE, NHA, academia, others) Circulate draft roadmap/master plan Collect and incorporate comments Publish final report Education and outreach on vision
Develop options that address all potential delivery points * * * * * *	Identify the option that will supply hydrogen to multiple end users- refueling (comm./retail), industrial parks, retail industry, homes, office buildings	 Team and budget (2003) Inventory current options and upstream segments (2004) Gap analysis and requirements (2004) Functional analysis of delivery needs (2004) Monitor technology advancement (2004-2020) 	• Industry	 Assemble core group of government and industry Develop information sharing forum/mechanism
Analyze current infrastructure suitability for future use * * * * *	Better understand existing delivery systems, capacities, potential adaptability to support H ₂ - H ₂ pipelines, NG pipelines (trans/service), refineries, product terminals/ pipelines, logistics, LNG, LH ₂ plants, GH2 system, gasoline refuel	 Form team and budget (2002) System inventory (2002) Analyze systems- forecast market, costs, feasibility, opportunities (2003) Report out (2003) 	 DOE Industry in-kind 	DOE and industry form team

TOP VOTE-GETTING NEEDS	NEED DESCRIPTION	Key MILESTONES AND DATES PRIMARY FUNE ENTITIES		NEXT STEPS
 Public outreach materials ◆ ◆ ◆ Branding/marketing, education, novel benefits 	Persuade the public that hydrogen is safe to transport as well as convenient and environmentally friendly	 Develop education program for hydrogen targeted for different sectors of population (2003) Roll out education program (2004) 	IndustryGovernment	Assign task to outreach group
 Tech validation to address R&D ◆ ◆ ● High pressure breakaway, sensors, fueling protocol, robotic refueling, compressors, on-site production, establish public/private partnerships on refueling system/components 	Testing and validation of components and subsystems used in providing hydrogen to the consumer with evidence of safe operation satisfactory to permitting authorities	 Establish an organization including insurance, government, national labs, and industry to perform testing and certification (end of 2003) Identify components requiring validation and develop testing protocols (end of 2004) Conduct testing and validation (ongoing) 	 Government Industry Insurance providers 	Organize testing and validation workshop including all key players (Nov 2002)
Better access to existing info ♦ ♦ ♦	Better access to non proprietary information relating to the delivery of hydrogen to avoid duplication of efforts and get a full understanding of what has already been done and currently ongoing	 ID appropriate DOE entity (Oct 2002) Survey available information from government, industry and associations (June 2003) Build database (Sept 2003) Enhance website (Mar 2004) Routine updates (Annual) Engage EIA (2003) 	• Government	Steve Chalk to build intra agency team

SECTION 4

HYDROGEN STORAGE BREAKOUT SESSION

- Barriers: What are the scientific, environmental, engineering, market, institutional, education, and economic barriers for general, physical, and nonphysical storage technologies that interfere most with achieving the vision?
- Needs: What are the most important needs for storage devices, including codes and standards, crosscutting, education, process, materials, technologies, financing, and others to address the barriers?
- Next steps: What are the top priority needs, key milestones, primary funding entities, and primary performing entities for the next steps?

Participants:

NAME	ORGANIZATION
George Thomas	Sandia National Laboratory
Richard Uchrin	Activated Metals Technologies
Alan Niedzwiecki	Quantum Technologies
Kenichi Sakamachi	JMC USA
Andrew Haaland	Thiokol Propulsion
John Barclay	CryoFuel Systems, Inc.
David DaCosta	Ergenics, Inc.
Katherine McHale	Millennium Cell, Inc.
Randy Schaffer	Structural Composite Inc.
Danesh Chandra	University of Nevada, Reno
Stephen Tang	Millennium Cell, Inc.
William Summers	Savannah River Technology Center
Gregory Schuckman	Florida Solar Energy Center
Andy Abele	Quantum Technologies
Robb Thompson	Dynetek Industries
Jim Ritter	University of South Carolina
Duane Adams	Minnesota Corn Growers Association
Adam Pivovar	National Institute of Standards Technology
Vesna Scepanovic	Natural Resources Canada
Rosa Young	Chevron Texaco Ovonic Hydrogen Systems LLC
Patricia Watson	Dupont
Dale Tiller	Lincoln Composites
Terrence Udovic	National Institute of Standards & Technology
George Fenske	Argonne National Laboratory

FACILITATOR: Jennifer Miller, Energetics, Inc. (assisted by Jamie McDonald)

HYDROGEN STORAGE BARRIERS

(**+**=Vote for top priority)

STORAGE TYPE	SCIENTIFIC	ENVIRONMENTAL	ENGINEERING	MARKET	INSTITUTIONAL	EDUCATION	ECONOMIC
General	 Development of high capacity lightweight, low temperature, fast kinetics hydrides for transportation (1. Technological barrier, 2. Cost) Energy densities sufficient to gain market acceptance A A A A A A A A A A A A A A A A A A A	 "End-of-life" disposal/ recycling * * * 	 Technology barrier (re: volume, weight, safety, cost) ◆ ◆ ◆ Moving performance targets for mobile and stationary applications ◆ Meeting all storage requirements simultaneously Lack of hybrid storage concepts for various applications ◆ Lack of integrated vehicle health monitoring for H2 systems ◆ Compatible components to be developed 	 Lack of market pull Limited or no manufacturing infrastructure Need to meet consumer expectations for safety, range, affordability, "greenness" ◆ ◆ Consumer acceptance of the unknown (replacement technology / safety perception ◆ Lack of agony neutral solutions for consumer (transparency) ◆ ◆ ◆ ◆ ◆ ◆ Customers must "get" more from energy storage if they must "pay" more for it Consumer will not electively pay (much of a) premium for green ◆ Overly restrictive requirements (eliminates options and diverts resources) ◆ Difficulty of replacing established 	 Insufficient funding and support, and requiring cost- sharing 	 Lack of safety demo's and acceptance Lack of education about H2 safety ★ ★ ★ ★ ★ ★ Lack of international outlook (communication) ◆ Expectations/mindset of the American public 	 Cost reduction in the absence of high volume demand A A A A A Lack of internalizing externalities (true cost of petroleum) How many "H2 storage materials" will the economy support? If better materials come along will they be able to economically drop in? Wise comparison and realistic assumption of cost Lack of production opportunities

STORAGE TYPE	SCIENTIFIC	ENVIRONMENTAL	ENGINEERING	MARKET	INSTITUTIONAL	EDUCATION	ECONOMIC
				 technologies ◆ Lack of industry leadership in setting high standards for H2 safety and performance 			
Physical			 Lack of more efficient liquefier technology (FOM >0.5) Lack of "zero loss" cryogenic tanks that are "smart" Manufacturing process 		 No DOT standards for type 3 & 4 tanks for bulk transport and stationary applications Lack of what pressures will be supported by OEM's & infrastructure (350 bar, 700 bar?) 	 Lack of education about "cryogenic" characteristics of gaseous energy systems 	 Cost reduction in composite materials Need for lower cost liquefier technology (1. base load, 2. internal, 3. distributed scales)
Non Physical	 Lifetime of existing metal hydride materials ◆ ◆ Fast charging of H2 for storage in MH ◆ Lack of storage media with high density, reversible, low temperature H2 and CH4 ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ Inadequate volumetric density in nanotubes NaAlH4 viable charge/discharge T&P's for portable applications 		 safety aspects of "storage material plus H2" 		 No definition of "fast-charging" Standards for storage of H2 in MH ♦ ♦ ♦ 		 Raw material supply/demand (carbon fiber) ◆

HYDROGEN STORAGE NEEDS

(**<** =Vote for top priority)

(N = near-term < 2010, M = mid-term 2010 < 2020, L = long-term > 2020)

CODES & STANDARDS	CROSSCUTTING	EDUCATION	PROCESS	MATERIALS	TECHNOLOGIES	FINANCING	OTHER
 Alignment of government and other agencies to develop codes and standards 	 Hydrogen permeation and detection (sensors) Require "wellhead-to- wheels" energy efficiency analysis for all storage technologies ◆ ◆ ◆ (N) Thermo- dynamic limitations 	 A k-12 and beyond program needs to be developed on H2 storage (gaseous, cyro, and solid state) Education and outreach program for localities 	 Processes for developing tanks for mass production + + + + (N) Research support for cost reductions in production process of H2 fuel from chemical hydrides + (N) 	 Integrated and accessible research network incorporating all government agencies providing funding Coordinated national program to develop alanates (M), carbon storage (L), metal hydrides (N), and chemical (M) A A A A A A A A A A A A A A A A A A A	 Design for "customer acceptance" technology assessment for H2-fuels (especially storage) ◆ (N) Need for storage technologies for heavy duty vehicles ◆ (M) R&D needs to focus on solid state material systems deign and optimization (heat management, etc) • ◆ ◆ (M) Integrated systems (storage with metering, etc) • ◆ ◆ (N & M) - Heat integration on-board MH system (reversible) Zero-loss tank (cyro storage) Health monitoring technology (cycle counting, strain monitoring) ◆ ◆ (N) 	 Each government agencies needs to have a H2 funding program ***** Increase in funding ***** H2 cross-cutting program More cohesive national presence among all interest parties * Expand range of storage technologies supported ******* *(L) Encourage industry funding (oil companies) * An out of the box call for proposals needs to be offered beyond exploratory ****** (N) 	 Large demos to expedite codes and standards ◆ ◆ (L) large scale for different storage technologies raise visibility re (safety, codes & standards) Streamline implementation of H2 (mobile) technology Kinetics of hydrogen uptake and discharge ◆

CODES & STANDARDS	CROSSCUTTING	EDUCATION	PROCESS	MATERIALS	TECHNOLOGIES	FINANCING	OTHER
				 Novel/new materials (clays, glass spheres, others) ◆ ◆ ◆ (L) Hydrogen embrittlement, stress corrosion cracking, permeation ◆ (continuous) Program to develop high risk technologies			

TOP PRIORITY NEEDS	BRIEF DESCRIPTION OF THE NEED	KEY MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	PRIMARY PERFORMING ENTITIES	NEXT STEPS
Large scale demos for storage technologies	 Demonstrate performance Public acceptance Codes & standards Mobile Stationary 	 CG, CH2, Metal hydrides - ongoing -Performance -Public acceptance -Codes & standards Alanates - 2007 Carbon, other - 2010 	 Cost shared between government and industry 	IndustryNational labs	 Demonstrate new technologies as developed
Develop improved materials for containment	 Lower cost Higher performance (fibers & resins, etc) tanks Reversible & irreversible hydrides, carbon, etc Chemical 	 viable storage by 2010 visible technology demonstrations by 2005 application specific with other hydrogen technologies 	 Government and industrial base 	 Technology: Government, academic, and industrial partners Market: Industry – industry partnership 	 Continued optimization of non traditional materials (composites, high risk, unknown)
Alignment of government and other agencies to develop codes and standards	 Alignment of C&S agencies needed to complete in time for need 	 Establish lead person in government - 2003 Establish coordinated U.S. effort - 2005 	DOTDOEIndustry	 DOT National Laboratories Industry (SAE, CGA) 	
Materials performance under unique or extreme conditions	 Fully understand effects of extreme conditions on new containment systems to ensure safety 	 Now and ongoing effort Establish database <2010 Define test protocol <2010 Test new materials – on going 	 Government agencies (DOT, DOE) 	 Established by: national labs and universities Ongoing validation by independent testing organizations 	 Establish database on existing materials Define performance and test criteria
Process for developing mass production H2 storage	 Need for process with interim steps to go from lab scale to full mass production Transition from R&D to high-speed, high volume manufacturing 	 Compressed - <2010 System development progress Inspection techniques Metal < 2010 Chemical <2020 Market pull to drive production efficiency 	 Industry DOD DOE Cost shard effort between government and industry partnership 	 Industry Universities National labs 	 Define actual programs Solicit funding Consider government incentives to create markets Broad area announcement to industry, national labs, and universities
Develop novel/new material	 Need better performing, lower cost storage 	 Demonstrate new materials – 2010 Establish program, 	 Government Some industry (in kind, tax credit) 	National labsUniversitiesIndustry	Call for proposals

HYDROGEN STORAGE NEXT STEPS

TOP PRIORITY NEEDS	BRIEF DESCRIPTION OF THE NEED	KEY MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	PRIMARY PERFORMING ENTITIES	NEXT STEPS
		 make awards - 2004 Identify new candidate - 2007 			
Program for high risk technologies	 Freedom to pursue non- obvious technology solutions independent of traditional performance metrics 	 Specific accessible funding routes in place by 2004 Develop high risk technology roadmap & funding profile ASAP (2003) 	Government	Government labsAcademiaIndustry	 Establish a steering committee to develop long- term technology roadmap and funding profile
Achieve a funding level commensurate with importance of storage	 Lack of funding to investigate all material possibilities (development and discovery) 	 Rapid jump in near term >\$100M by 2005 (minimum) 	 DOE DOT US Armed services Industry (proprietary) 	 Near term – Gov approximately 80% and decrease level of involvement as time progresses Near term – Industry approximately 20% and increases as time progresses Unsure as to whether energy companies should play a role 	 Maintain a reasonable level that is commensurate with demands and needs over time
Have a coordinated national program to develop H2 storage materials	 Need for funded national program for advanced materials research to improve performance and reduce cost Alanates Carbon structures Metal hydrides Chemical 	 ID areas of research - <2010 Set up funding - <2010 Manage program Existing technologies 2010<2020 New materials >2020 	 Government Industry 	 Industry Universities National labs 	 ID level of funding needed Secure funding

SECTION 5

HYDROGEN ENERGY CONVERSION BREAKOUT SESSION

- **Barriers:** What are the scientific, engineering, market, financial, and institutional barriers that interfere most with achieving the vision?
- Needs: What are the most important needs for fuel cells and combustion devices, including research, technology development, demonstration, codes and standards, analysis, institution building, market development, legislation, and education and training?
- **Paths forward:** What are the top priority needs including, their scopes, key milestones, next steps, and partnerships?

Participants:	
NAME	ORGANIZATION
Tim Armstrong	Oak Ridge National Laboratory
Gordon Gillerman	Underwriters Laboratories
Shiro Matsuo	Honda R&D America
Tad Wyser	U.S. Environmental Protection Agency
Faruq Marikar	Consultant
David Lax	American Petroleum Institute
Dan Smith	GE Research
Jim Miller	Argonne National Laboratory
Don Hardesty	Sandia National Laboratory
Bill Ernst	Plug Power
Wison Luangdilok	Fauske & Associates
Brent Gerdes	Lincoln Composites
Krishna Sapru	Energy Conversion Devices
Bill Smith	Proton Energy Systems
John Donohue	DCH Technology
George King	Houston Advanced Research Center
Rich Carlin	Office of Naval Research
John Celentano	Startech Environmental Corporation
Dexter Sutterfield	National Energy Technology Laboratory
John Baker	JMC (USA), Inc.
Nancy Garland	U.S. Department of Energy
Mike Davis	Avista Labs
Francis Lau	Gas Technology Institute
Stacy Klein	Hart Downstream Energy Services
Richard Sassoon	SAIC

FACILITATOR: Rich Scheer, Energetics, Inc. (assisted by Tara Nielson)

(*=Vote for top priority)				
SCIENTIFIC	Engineering	MARKET (Both Fuel Cells and Combustion)	FINANCIAL	INSTITUTIONAL (Both Fuel Cells and Combustion)
 FUEL CELLS Lack of fundamental understanding prevents "marriage" of electrochemistry with materials science ★★★★★★★★★ Insufficient focus and coordination of current R&D programs ★★ Unsolved sealing, joining, and interconnect materials issues in SOFC Lack of fundamental understanding prevents progress in making fuel cells more durable and affordable COMBUSTION Lack of understanding about safety implications of H₂ combustion properties ★ Lack of low cost materials in combustion systems for using H₂. 	 FUEL CELLS High costs of materials and manufacturing for all fuel cell types Membranes and catalysts for PEMs Unproven durability and reliability of performance Membranes Lack of demonstrated service life and performance Start-up time less than needed (depends on fuel cell type and application) Safety issues have not been adequately addressed (for both fuel and fuel cell) Unsolved corrosion issues in MCFC Questions about performance under differing environmental conditions and geographic locations COMBUSTION Lack of proven engine and turbine performance using H₂ Methed to find the set of the set of	 Market (Both Fuel Cells and Combustion) No market pull for clean power A A A A A A A A A A A A A A A A A A A	 FUEL CELLS Overly optimistic projections of fuel cell business growth Lack of incentives to address high capital costs ◆ COMBUSTION Turbines will outperform recips for locomotive/marine applications but will be much more expensive BOTH FUEL CELLS AND COMBUSTION Financial markets have no confidence in the predictability/stability of this sector ◆ ◆ ◆ ◆ ◆ ◆ ◆ Large risks of being overcome by competing technologies ◆ ◆ No source of "patient" capital ♦ No clear early market leader for development or adoption 	 Lack of coordinated development of technical requirements and conformity assessment methods to deliver necessary confidence in safety and reliability A A A A A A A A A A A A A A A A A A A

HYDROGEN ENERGY CONVERSION BARRIERS

(+=Vote for top priority)

HYDROGEN ENERGY CONVERSION NEEDS

(+=Vote for top priority) [I=Industry; G=Government; U=Universities; L=National labs; SD=Standards developing organizations] [N*= by 2005; N= by 2010; M= by 2020;L= by 2030]

FUNDAMENTAL RESEARCH FOR FUEL CELLS	TECHNOLOGY DEVELOPMENT FOR FUEL CELLS	FUNDAMENTAL RESEARCH FOR COMBUSTION	TECHNOLOGY DEVELOPMENT FOR COMBUSTION	DEMONSTRATIONS OF FUEL CELLS AND COMBUSTION DEVICES	CODES AND STANDARDS FOR BOTH FUEL CELLS AND COMBUSTION
 Electrochemistry Interface Interface Ideg; N-M-L Ceramics Characterization methods Degradation mechanisms High temperature PEMs Low temperature SOFCs Materials Science Ideg; N-M-L Stack materials Oxygen cathodes Membranes 	 Enhanced manufacturing capabilities ◆ ◆ ◆ ◆ I; N-M-L – Large volumes – Better consistency and quality control – Better fabrication techniques • Expanded consideration of all types of fuel cells ◆ ◆ ◆ G; N • Component cost reductions through a more reliable supply chain ◆ ◆ ◆ I; N* – E.g., Lower cost power electronics 	 Higher efficiency H₂ engines and turbines ★★★★★★★★ I&GN-M-L Higher temperature materials Better sensors and instrumentation H₂-fossil fuel blending Better techniques for H₂ combustion management and control ★ I&GN-M-L 	 Engine designs and after treatment controls for low NO_x ← ← ← ← ↓ I; N Engines SCR for turbines In-situ use of H₂ as a NOx reducing agent • ↓ I; N Integrated H₂ storage release and engine/turbine controls • ↓ I; N Recip engine designs and controls for H₂ blends ↓ I; N* Turbine designs and controls for H₂ blends ↓ I; N H₂ catalytic combustors and controls for large turbines ↓ I; N Better H₂ sensors for leak controls ↓ I; N* 	 Expand existing demonstrations of fuel cells, IC engines, and turbines in both stationary, mobile, and portable applications ••••••• G; N* Power parks and fueling stations Test for reliability of advanced materials Test for durability of performance Validate product attributes by in-service field testing to establish durability, cost effectiveness, and life cycle efficiency I; N 	 Product safety standards for mobile and stationary applications ★★★★★★★ SD;N Amend/extend existing building, vehicle, utility codes to enable day-to-day business ★★ SD;N Utility interconnection Power quality Plumbing and connections Safety standards for H₂ fuels and fuel quality ★★ SD;N

HYDROGEN ENERGY CONVERSION NEEDS <i>(CONTINUED)</i> (+=Vote for top priority) [I=Industry; G=Government; U=Universities; L=National labs; SD=Standards developing organizations] [N*= by 2005; N= by 2010; M= by 2020;L= by 2030]				
ANALYSIS FOR BOTH FUEL CELLS AND COMBUSTION	INSTITUTION BUILDING FOR BOTH FUEL CELLS AND COMBUSTION	MARKET DEVELOPMENT FOR FUEL CELLS AND COMBUSTION	LEGISLATION	EDUCATION AND TRAINING
 Market analysis with product requirements and timing ◆ ◆ ◆ I; N Catalogue (electronic database) of existing research findings ◆ ◆ ◆ G; N* Software tools to simulate vehicle collisions for H₂ fuels ◆ ▲ I; N Benefits/impacts of reduced carbon emissions on the environment ◆ G; N* "Killer applications" for fuel cells Architecture of H₂ fuel distribution system Accelerated testing 	 Enhance, expand, and integrate fuel cell and H2 combustion research and form "National Center" for pre-competitive efforts 	 Understand and communicate value propositions 	 EPA vehicle emissions regulation flexibility for H₂ fueled engines G; N* More financial incentives for H₂ conversion technologies Government mandates to facilitate market development Net metering 	 Installers and technicians Emergency responders

HYDROGEN ENERGY CONVERSION PATHS FORWARD

TOP PRIORITY NEED	SCOPE	KEY MILESTONES	NEXT STEPS	PARTNERS
Fuel Cell Research	 Broad materials science Improved reliability Improved durability Lower Cost 	 Catalysts with 50% better performance and 50% cost reduction 120-120 degree C PEM 500 degree C ionic conductors (400 degree C in ten years) 	 Evaluate on-going research Re-focus on roadmap priorities 	 Industry-government partnerships Cost-shared R&D With universities and national labs
Fuel Cell Technology Development	StacksComponentsSystemsManufacturing	 Evaluate existing program targe Modify as needed Set priorities for cost reduction 		
Fuel Cell Demonstrations	 Customer involvement Evaluation and dissemination Products not technologies Fleets not individuals 	 Commercial sale of products Natural outflow of successful te Strategy to collect results and d Will happen, challenge is to material 	isseminate	
Combustion Research Combustion Technology Development Combustion Demonstrations	 Covers all devices and applications Improve power density Optimize "knock management Integrate on-board storage with fuel injection HCCI research Turbine systems fuel injection mixing, dilution, and controls Materials Modeling and analysis of vehicle collisions 	• Systems analysis of H2 fuel cycle for all devices and applications	-Expand DOE combustion research activities	Industry-government partnerships -Cost-shared R&D -With universities and national labs
Product Safety Standards	 All fuel cell types Turbines IC engines Stationary and mobile 	 Select standards developers by Propose standards by 20034 Begin development by 2003 Publish 2005 	2003	UL, IEEE, CGA, ISO, DOT, CSPC, Trade Associations, AHJs, DoD, DOE
	• H ₂ vehicles	 Select standards developers by Propose standards by 20034 Begin development by 2003 Publish 2005 	2003	SAE, DOT, DOE, Insurers, CGA, Auto Associations

TOP PRIORITY NEED	SCOPE	KEY MILESTONES	NEXT STEPS	Partners
Amend Existing Codes and Regs	 FCs, turbines, and engines in buildings H₂ plumbing and storage 	 Select standards developers by 2003 Propose standards by 20034 Begin development by 2003 Publish 2005 		• NFPA, ICC, ASME, DOT, DOE, CSA, CSPC, Insurers
	• Utility interconnection	Existing IEEE process		• IEEE, DOE, FERC, Trade associations
National H2 Energy Conversion Center(s)	 Semitech model Virtual entity Pre-competitive R&D Fuel cells, engines, recips Stationary and mobile H₂ fuel blends/mixing 	 Evaluate existing R&D entities in 2002 Develop charter for new integrated organization by 2003 Establish new organization 2003 Develop R&D plan 23 		 Government – DOE, DOD, NASA, DOT, EPA, DOC Industry – Auto, Energy, Equip Manufacturers Labs Universities
Research Compendium &Database	 Public domain documents Covers all devices and applications Widespread dissemination 	 Develop scope and issue compe Begin development 2003 Working product 2005 	titive solicitation 2002	• DOE and selected contractor

SECTION 6

HYDROGEN APPLICATIONS BREAKOUT SESSION

- **Barriers:** What are the barriers that interfere most with achieving the vision?
- **Needs:** What are the most important needs to undertake between now and 2030 to address the barriers and achieve the vision?
- **Top needs and next steps:** What are the top needs, including their key milestones and dates, primary funding entities, and next steps to addressing them?

articipants:	
NAME	ORGANIZATION
Frank Balog	Ford Motor Company
Ed Bless	H2 Solutions
Andrew Browning	Methanex, Inc.
David Bruderly	Clean Power Engineering
Ken Cameron	General Motors
Rodney Carlisle	History Associates
Kipp Coddington	Covington and Burling
William Craven	DaimlerChrysler
Erin Cready	Sentech, Inc.
James Daley	U.S. Department of Energy
Jason Francque	Deere & Co.
Michael Gan	Hamilson Sundstrand
Norma Glover	South Coast AQMD
Mark Grist	QuestAir Technologies
Michael Hainsselin	Praxair
Jim Hempstead	
Raphael Herz	Massachusetts Renewable Energy Trust

Participants:	
NAME	ORGANIZATION
Peter Johnston	Pinnacle West Capital Corp.
Ferris Kawar	ATTIK
Jay Keller	Sandia National Laboratory
Ben Knight	Honda R&D
Jaimie Levin	Alameda Contra Costa Transit
James Lide	History Associates, Inc.
Maggie Mann	National Renewable Energy Laboratory
Robert Mauro	U.S. TAG ISO TC 197
James Miller	Argonne National Laboratory
Terry Penney	National Renewable Energy Laboratory
Richard Rashilla	Lincoln Composites
Jerry Rogers	GM R&D Center
Michael Romanco	Gas Technology Institute
Andrew Searcy	So. Hydrogen Fuel Cell Research Partnership
Kenneth Stroh	Los Alamos National Laboratory
Bruce Wood	John Deere
FACILITATORS: Jack Eisenhau assisted by Charlie Smith)	uer, Keith Jamison, Energetics, Inc.

Component Technology	SAFETY	Consumer and Market Acceptance	TECHNOLOGY DEVELOPMENT STRATEGY	SUPPORTING INFRASTRUCTURE	Competing Technologies, Fuels and Infrastructures	PUBLIC POLICY
 Lack of on-board storage technology Demand for hydrogen vehicles is limited by performance/cost Lack of on-board reforming technology Materials limitations science applications Components: radiators compressors storage Cost and functionality of end-use technology 	 Perceived safety issues OOOOO Developing a safe fueling interface/ procedure OOO Electrical safety issues 	 Customer perception of cost/benefit OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	 Lack of national leadership for long-term strategy OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO	 Fueling Chicken vs. egg, infrastructure vs. vehicles OOOOOOOO Limited hydrogen availability OOO lack of hydrogen fueling infrastructure Hydrogen production technology must draw upon a diverse energy feedstock, must be impact sensitive Other Parts of the mobile infrastructure OO parking garages service stations Lack of practical codes and standards OC Lack of mechanics training standards 	 Low-risk, old technologies inhibit development of new, risky technologies OOOOOOOO Institutional OOOOO stranded cost regulations Cost of existing fuels too cheap OO Lack of insurance for risk mitigation (safety and economics) O Alternative choices O fuel cells ICE's turbines stirling Sunk costs of existing manufacturing technologies, labor structure sales and service network Low consumer cost of existing mobile technologies is hard to overcome 	 Uncertain long-term program and political commitment (> 20 years) OOOOOOOOOO Lack of a sustained financial commitment from the government OOOOO Conflicting perceptions of "social good" provided by energy OOO Political partnership over energy resource, energy development choice O Social benefits not clearly articulated Uninformed decisionmakers Economics of carbon- free generation of hydrogen, reliance on hydrocarbon feedstocks Public perception of problem available gas smog

INSTITUTIONAL/REGULATORY	MARKET (MIS)PERCEPTIONS	Scientific/Engineering	MARKET DEVELOPMENT	EDUCATIONS
 No premium received for "clean fuel" OOOOO need environmental driver for conversion Too much policy emphasis on fuel cells, not enough on ICEs OOOOO No national, uniform interconnect standards O Not enough policy emphasis on fuel benefits, public/social costs O Safety codes and standards not generally known (or available) End-users lack of clarity on siting process Regulatory-hydrogen plants A.Q. permits? Uncertainty with electric power restructuring/ deregulation Central power orientation in institutions and policies Portable, no standard to allow shipping hydrochloride storage containers If zero net CO₂ is a goal, distributed fossil fuel systems are problematic Lack of a supportive consortium for innovative industries Lack of air pollution control integration with industry Pollution costs are external to fuel cost 	 Perception of hydrogen safety and accident risks [•] Lack of perceived solutions for hydrogen [•] Customers may be risk-averse Traditional energy sources viewed as cheap, available, and acceptable Customers' perception that there is a limited choice of stationary products Unrealistic expectations about opportunity for residential-type applications of PEM ⇒ potentially misdirects funding 	 <u>Portable:</u> Lack of cheap, efficient, long-lived fuel cell OOOOO Fuel cell life is inadequate OOOO <u>Stationary:</u> Cost of hydrogen storage, particularly at locations of low power cost OOO Cost of hydrogen storage (especially for renewable hydrogen) OOO Investment communities have short- term payback horizon OOO Hydrogen systems are too complex OO Immature technologies O fuel cells reformers system integration Systems not optimized for hydrogen Distributed carbon sequestration with small hydrogen production Limited features of small-scale reformers Gost of small-scale reformers Demand changes Fuel cell price per kW too high Cost and storage of renewable energy Limited incentives for utility industry deployment From the utility perspective, cost- compared to natural gas wholesale vs. retail 	 Lack of support and funding for hydrogen business newcomers 00000 Lack of fuel delivery infrastructure 00000 Little incentive for early adopters 000 Availability of hydrogen, specialty chemical, not a fuel 0000 Lack of "killer applications" 000 Lack of "killer applications" 000 Lack of "killer applications" 000 Lack of talent in hydrogen-related industries (human capital) 0 Lack of coordinated effort for different application areas Applications are small Geographic issues with fuel infrastructure need to join with rest of the distributed generation market No mass production, no product available for hydrogen turbines (MW scale), and hydrogen ICEs (piston) Combined heat and power is not a way of operating in the United States Who will service? how often? disruption? 	 Lack of public education (what is driver?), why go to hydrogen? • Lack of knowledge among code officials Need more familiarity with equipments, safety, codes, insurance issues Limited awareness and understanding of potential efficiency and environmental benefits

BARRIERS - APPLICATIONS (STATIONARY) (2 of 2) ☺ = Most Critical Barrier

APPLICATIONS NEEDS TO ADDRESS THE BARRIERS AND ACHIEVE THE VISION BY 2030

(S = Most Critical Barrier) Time Frame: (N = Now-2010; M = 2010-2020; L = 2020-2030+)

Lead (capital letters) and Supporting (lower-case letters) Roles: (I = Industry; G = Government; U = Universities; NL = National Labs; TA = Technical Associations)

REGULATIONS, CODES, STANDARDS	DEMONSTRATIONS AND TEST BEDS	PUBLIC POLICY	APPLICATION TECHNOLOGIES	HYDROGEN PRODUCTION	TECHNOLOGY DEVELOPMENT AND PARTNERSHIP	MARKET CONDITIONING
 Standards agreement (N) Standards agreement (N) A,G intelligent, technically-based urgent need Progressive expansion of small-scaled demo programs to build consumer, customer confidence and refine technology SSS International code, make friendly for hydrogen change International Fuel Gas Code National Electric Code SSS Focused approach to achieve "critical mass" in technology rollout and demonstrate pathfinder approach SS Government regulation to set requirements and drive technology and market development 	 Assist development of community- based applications and installations (NM) OOOO GI hydrogen industrial/theme park demos cannot precede public policy standard PIXAR movie showing hydrogen man overcoming fossils Assist development of fleet-based applications OOOO-vehicle market in one spot using fleet clusters fueled by hydrogen Practical demonstrations to validate technical development OOOO Create hydrogen application incubators 	 Government serves as the early adopter customer (N) COCON GI Public policy COCO Concerted education demonstrations engaged debate National announcement by President Bush on a national hydrogen mission COCO Develop consensus middle ground view that nation needs to move away from fossil fuel reliance COCO Federal and state transition incentives COCO Public policy incentives COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO	 On-board storage On-board storage (applications) G/NL/U (gaps and fundamental research) more concentrated R&D on diverse storage media reliability, low cost volume nano tech (L) sodium borohydride (M-L) gas 5/10 (N) liquid (N) Very short-term hydrogen end use technology development for market readiness (i.e., ICE, high pressure tank) (N) OOOOOOII (initiate) G (funding) Use ICEs as enabler to support hydrogen infrastructure Low-cost stack and systems (NML) OOOOQII (applications) G (gaps, funding) ultra cap/bat high temperature membrane 	 technology in the 70s and 80s Near-term hydrogen production, infrastructure utilization (i.e., refineries) Reduce the cost of hydrogen to give fuel parity with natural gas 	 Create Federal, state, and local, and private partnership program to demonstrate systems (N) CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	 Make local demonstration projects national through news events, town hall meetings, etc. (N) COOST COOST COO

APPLICATIONS NEEDS TO ADDRESS THE BARRIERS AND ACHIEVE THE VISION BY 2030

(**©** = Most Critical Barrier)

Time Frame: (N = Now-2010; M = 2010-2020; L = 2020-2030+) Lead (capital letters) and Supporting (lower-case letters) Roles: (I = Industry; G = Government; U = Universities; NL = National Labs; TA = Technical Associations)

REGULATIONS, CODES, STANDARDS	DEMONSTRATIONS AND TEST BEDS	PUBLIC POLICY	APPLICATION TECHNOLOGIES	HYDROGEN PRODUCTION	TECHNOLOGY DEVELOPMENT AND PARTNERSHIP	MARKET CONDITIONING
	 test bed environment "Broad Based Deployments" of hydrogen and fuel cell technologies (G) Dykema Gossett, PLLC 	DOE/DOD, EPA must coordinate programs/activities	 advance comp H₂ sensor manufacturable membrane Reliability and durability of operating systems (N-L) ○○○○○ Fuel infrastructure- chicken/egg ○○ need for small-scale, user-friendly, low-cost fueling device Redesign auto for early adoption ○○ Alleviate strain on stationary fuel cells by subsidizing distributed PVs and wind Increase hydrogen in topping cycle turbines for power generator ○ 		 competitive" R&D [•] Super coordination of hydrogen efforts (international) Support cost/benefit analysis for CHP and vehicle fuel deployment in residential/small office 	

TOP VOTE GETTING IDEAS	BRIEF DESCRIPTION OF THE NEED	KEY MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	NEXT STEPS
Agree on Intelligent, Technically-Based Standards	 Consensus among states Harmonization with international standards Increase level of attention in United States 			 Build consortium of agencies (e.g., DOT, EPA, California Air Resources Board [CARB]) to set codes, '02-'03 precede early applications Intensive process, feedback from lessons learned and new technologies 2 years later
Create Federal-State-Local- Private Partnership Program to Demonstrate Systems	 Government (less risk adverse) regulating change gives industry direction and assurance on where private investment should go Government is more sensitive to public policy issues and the global impacts and externalities of existing consumer demand 	 Alternative fuel mandate in 2001 requiring bus fleets in southern California to use fuels other than diesel CARB ZEV mandate for bus fleets 2003 demo 2008 15% of all vehicles CaFCP bus fleet demonstration begins 2004 Establish similar Federal mandate 	 DOE and DOT Car registration fees Public and private partnerships Local and state funding 	 Federal plan backed up by federal money Benchmark California
Establish Government as Early Adopter Customer	 Implement as many demonstration programs to introduce and evaluate emerging technologies 	 Federal government needs to mandate hydrogen programs for all government agencies today Enforce present law (Energy Policy Act of 1992) Fully funded, well-designed demonstration programs beginning with FY 04 	• DOE and DOT (T21 reauthorization) are primary funding sources	 Substantially fund Hydrogen Futures Act in FY 04 Fund successful demonstration programs on a sustained basis Adopt "Freedom Fuel" Action Plan along with Freedom Car Program
Provide Government Leadership and Financial Support for Infrastructure Development	 Develop limited number of demonstration sites for infrastructure using California Fuel Cell Partnership model Private industry financial criteria only supports term projects 	Milestones: • Fleet demos (< 100) – immediate • Fleets (5,000+ in United States) – 2008- 2012	 DOE DOD DOT State and local 	
Develop Very Short-Term Hydrogen End-Use Technologies to Stimulate Infrastructure and Market Readiness	 Promote and develop near-term products and technologies to stimulate and accelerate the implementation of hydrogen infrastructure Have regulatory agencies adopt philosophy of encouraging this approach (i.e., in lieu of ZEV mandate 	 Stationary power generation 500 stationary units Generate the market by FY 03 and FY 04 with the purchase of fleets that use these technologies 	Continued DOE support	 Fuel cell report to Congress Hydrogen Futures Act Let's not wait for the Holy Grail!

TEN MOST WANTED – APPLICATIONS (1 of 3)

TOP VOTE GETTING NEEDS	BRIEF DESCRIPTION OF THE NEED	KEY MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	NEXT STEPS
Research and Develop On- Board H ₂ Storage Systems	 Duplicate range of equivalent gasoline vehicles Hi pressure gas low weight/high strength permeation standards Reguires: R&D engineering high pressure hydrides nanotechnology Codes and standards 	6% by weightUltimate goal 7-8%	 DOE national laboratories Industry 	 Build demo's for 6, 7, 8% systems Qualify <u>Suggestions:</u> Study Sematec example for application to hydrogen and fuel cells (Bob Walker)
Develop Low-Cost Stack and Systems	 Increase life (reliable/durable) Reversible Decreased cost (comparable to ice) <u>Requires:</u> research/engineering high volume manufacturing high temperature membrane sensors/controls advanced components (compressors) catalyst loading hybrids (ultra cap/battery) basic material science 	Fuel cell report to congress dates	 DOE/DOD Industry States DOT 	 Build demo's (fleets/off-road) Qualify Codes, standards
Assist Development of Community-Based Clustered Applications and Installations	 Seed the creation of mini hydrogen economies 	 Issue RFP FY 03 Select winners FY 04 Commence building FY 05 Complete installations by 2010 	 Federal Grants (DOE) 70% State/local cost share 20% Industry cost share 10% 	 Develop the RFP solicitation

TEN MOST WANTED – APPLICATIONS (2 of 3)

TOP VOTE GETTING NEEDS	BRIEF DESCRIPTION OF THE NEED	KEY MILESTONES AND DATES	PRIMARY FUNDING ENTITIES	NEXT STEPS
Improve Reliability and Durability of Operating Systems	 To warranty hydrogen infrastructure and products to the same level as conventional systems 	 Develop performance- predictive analysis tools Field trial validation (ongoing) 	 National labs establish generic models, procedures, and criteria Industry applies results to products 	 Establish certification facility at a national lab
Promote/Publicize Local Demonstration Products Nationally through News Events, Town Hall Meetings, etc.	 Public image of hydrogen as a fuel is absent Need to educate public, state and local officials, schools, corporations, government, decision-makers, media, industry organizations 	 Documentaries (now) News events Safety videos Training Ride and drive 	 Joint DOE/Industry SAE, NHA API Other industry associations State and local government 	

TEN MOST WANTED – APPLICATIONS (2 of 3)

SECTION 7

HYDROGEN OUTREACH AND EDUCATION BREAKOUT SESSION

- What are the key hydrogen messages to communicate for education and outreach?
- Who are the target audiences?
- What are the barriers that most interfere with achieving the vision?
- What actions must be taken to address the barriers and achieve the hydrogen vision?
- What are the top priority action plans for education and outreach?

articipants:	
NAME	ORGANIZATION
Shannon Baxter	California Air Resources Board
EJ Belliveau	H ₂ Solutions
Maria Bellos	Fuel Cells 2000
Christine Messina-Boyer	Millennium Cell
Ken Cameron	General Motors
Bill Clapper	Sunline Transit
Mary-Rose de Valladares	DCH Technology, Inc.
Marshall Gilmore	Florida H2 Business Council
Art Hartstein	U.S. DOE, Fossil Energy
Katie Hoffner	Hydrogen Now!
Peter Holran	Wexler & Walker Public Policy Assoc.
Jonathan Hurwitch	SENTECH, Inc.
Susan Leach	Hydrogen 2000, Inc.
Jennifer Schaeffer	Plug Power Inc.
Greg Schuckman	University of Central Florida/ Florida Solar Energy Center
Jeff Serfass	National Hydrogen Association
Lauren Segal	BP
Charles Veley	US Hydrogen
Greg Vesey	Chevron Texaco
Suzanne Watson	Northeast-Midwest Institute
Steve Zimmer	Daimer Chrysler

FACILITATOR: Jan Brinch, Energetics (assisted by Lauren Giles)

Messages

- Need to "brand" hydrogen
- This is a long-term proposition
- Cleaner, more dependable, secure fuel
- Domestic = independent
- Source of hydrogen gives flexibility/diversity
- "A" hydrogen economy—integrated with other fuels (as opposed to "the" hydrogen economy)
- Hydrogen is another—not the only—energy source
- ♦ "Safe"
- Economics, environment, security
- Hydrogen is "cool," culturally "hip"
- "Pop" culture
- Bring down to "the peoples' level"

- Hydrogen is affordable—is it?
- Consumer convenience
- For stationary as well as vehicles
- Cost-effective in rural areas
- Environmental interests of the young
- Predictability
- Know the audience
- Hydrogen age must be inclusive—build on existing efforts
- Hydrogen must be affordable
- Need to tie in climate change and dependency on foreign oil
- Market to global economy
- Hydrogen and fossil fuel industry nexus

TARGET AUDIENCES

- John Q. Public
- K-12 school age children
- College students
- Policy makers (decision makers and legislators)
- ♦ State PUCs
- Local and state code officials
- ◆ Allied industries—secondary
- Science teachers
- Industry executives
- Professional/trade associations
- Media and press (trade and mainstream)
- Early adopters

- Service station operators and owners
- Transit agencies
- Foundations
- R&D community
- Government agencies
- Vehicle fleet owners/operators
- Regional planning organizations
- Environmental groups
- Multilateral institutions (World Bank, etc.)
- Commercial electric consumers (with high demand)
- FIRE: (<u>Financial</u>—lenders, investors, <u>Insurance</u>, <u>Real</u> <u>E</u>state industries)

PUBLIC AWARENESS	EXAMPLE/SUCCESS STORIES	EDUCATION (Students)	BUSINESS INVESTMENT	CULTURAL BARRIERS
 Lack of consensus about severity of environmental problems A A A A A A A A A A A A A A A A A A A	 Not enough demo \$ Too few opportunities to see fuel cells in operation Need ongoing public experiment (model communities) 	 Limited educator/teacher training Too few structured education programs Limited distribution channels for existing educational materials K-12 	 Lack of consumer pull Over emphasizing need to meet business profitability immediately Too few early adopters with deep pockets Not enough certainty of long term commitment/funding for H₂ investors 	 Lack of patience to keep vision "alive" Too many other innovative technologies Consumer inconvenience Lack of sufficient compulsion to change Perception of numbers

Hydrogen Education and Outreach WHAT ARE THE BARRIERS THAT MOST INTERFERE WITH ACHIEVING THE VISION?

Hydrogen Education and Outreach WHAT ARE THE BARRIERS THAT MOST INTERFERE WITH ACHIEVING THE VISION? (CONTINUED)

IMPLEMENTATION	POLICY AND IMPLEMENTATION	POLICY	SAFETY
 Too little urgency placed on commercialization ★ ★ ↓ Lack of standards ★ ↓ ↓ Too many unproven technologies with potential (OEMs and energy companies not ready to make big investments) ↓ Too many technologies, not enough \$ Need a critical mass! (Effort can get diluted in the short/mid run) Slow movement on infrastructure Timeframe uncertainty Cost of entry for the public/industry 	 Too few sustainable supporting policies • Weak public-private partnership and policy Lack of a viable pathway to buy into Lack of nearer term vision-tangibles 10 year focus 	 Inconsistent regulations ▲ ▲ ▲ ▲ ▲ Lack of understanding among legislative policymakers and regulators Lack of equitable "rules of the road" Over-regulation Lack of monetization of cost/ environmental impact of choices ▲ ▲ ▲ Too much entrenched energy interest (traditional means of power) and promotion thereof ▲ Misdirected incentive funding Energy choices—impact on foreign policy Not enough support for taxes to support H₂ development. Gasoline too cheap vs. "real" cost Lack of long-range planning by government 	 Too much fear of hydrogen safety problems or risks ***** Lack of understanding danger/safety of current fuels **** Too little effort on business and regulatory communities in FIRE (Financial, Insurance, Real Estate) trades **

BUSINESS INFRASTRUCTURE	EDUCATION	FUNDING ADVOCACY	Marke	TING
 Integrate codes and standards (national level) •••• Communicate codes and standards •••• To insurance companies To operators, e.g., service stations To builders/contractors/ architects To regulators Communicate a reasonable timeframe (with exit gates) for commercialization Require accounting (FASB, etc.) of environmental costs/benefits 	 Commit long-term resources to educate K-12 and beyond about H₂ energy. Develop curriculum for K-12, vocational, 4-year engineers, and advanced degree Include H₂ lesson plan packages with video, demo hardware, and experiments to help educate science teachers and their students Program for educator training (K-12, vocational) Have summer workshops for high school teachers (similar to economic group) Increase number of trained K-12 science teachers Inventory existing resources Formulate the path of continuous education Hydrogen fellowship program Offer \$ for college engineering theses/projects for hydrogen: e.g., vehicle systems, stationary applications, storage, catalysis 	 Legislate tax and other incentives to invest in H₂ and fuel cells by 2005 •••••••• Incentivize state-to-state hydrogen partnerships Create public acceptance for sustained and increasing government funding for the hydrogen economy • • Fund R&D now Fund the federal government to purchase H₂ equipment (vehicles, power generation, etc.) • Take results from current partnerships and publicize them	 Create consumer demand through all media Create cartoons Product placement in various mediums, i.e., films Develop community model that identifies stakeholders, products, and infrastructure to transition to a H₂ economy. The model would be transportable, repeatable, nonpartisan, non-parochial Determine how to incentivize the population to move to a hydrogen economy Create compelling message or value proposition Definable goals Environmental understanding Gear public toward solution For the grandchildren Personalize message Safety "Brand" H₂ as clean fuel, freedom fuel Tie need for H₂ to environmental, economic, and foreign policy 	 Develop P&R plan Could be similar EPA/DOE-driven EnergyStar[®] Implement a "What is H₂?" campaign Create H₂ traveling education exhibit Develop PR strategy, briefing package media kit, Op-ed pieces Identify public spokespersons, e.g., Jay Leno Develop trade show and association presentation/booth Organize coordinated policymaker outreach and education Invite consumer groups to participate in hydrogen meeting Create hydrogen education and information center to disseminate H₂ information Create safety/regulatory information clearinghouse Educational H₂ programs Educational video

Hydrogen Education and Outreach WHAT ACTIONS MUST BE TAKEN TO ADDRESS THE BARRIERS AND ACHIEVE THE VISION OF H_2 ?

Hydrogen Education and Outreach WHAT ACTIONS MUST BE TAKEN TO ADDRESS THE BARRIERS AND ACHIEVE THE VISION OF H₂? (CONTINUED)

GOVERNMENT ADVOCACY	DEMOS
 Federal advocacy – build broad business, political, environmental, and higher education coalition to influence U.S. energy policy toward H₂ To earmark public awareness \$ Form Congressional H₂ fellows program Deliver message that illustrates the consequences of inconsistent regulations Increase number of Congressional hydrogen advocates Advocate acceptance and passage externalities Support appropriations in Congress Advocate subsidy incentives and policies to bring hydrogen "up to par" with other fuel/power options Deliver message that promotes continuous path of technology improvement Analyze/build case for monetizing environmental externalities Draft externality legislation to impact energy policy Coordinate all Federal H₂ funding under, for example, OSTP/NSTC for R&D crosscut program tot Encourage regional H₂ initiatives/partnerships League of Cities, Conference of Mayors, National Governors' Association, etc. Town Hall meetings for legislators 	 Create a public demo H₂ village Fund the creation of a H₂ "micro-economy village" for public education—web cast, reality TV, etc. Launch phased model community projected to showcase H₂ and fuel cell technologies and solutions by 2005 Get Disney to create "hydrogen world" with hydrogen characters Get portable fuel cells to market to familiarize public with H₂ fuel Create PR campaign to support the demo Advocate the development of a cost-shared program leading to demonstration of H₂ products and services Not enough demos. Develop a "clean H₂" demo program similar to clean coal demo program (to policy makers). Develop (and fund) cost-shared demos stationary fuel cells; vehicular fuel cells; H₂ production, infrastructure, and storage

ACTION PLANS						
TOP VOTE GETTING ACTIONS	BRIEF DESCRIPTION OF THE ACTION	Target Audience(s)	Primary Performing Entities	Primary Funding Entities	NEXT STEPS	TIMEFRAME
Build broad coalition to influence U.S. energy policy on Hydrogen	 Support appropriations Explain consequences of inconsistent regulations Support continuous path of technological improvement Support tax incentives 	 Colleagues Congress/Administration Stakeholders State governments 	 NHA-Advocacy role and interest DOE Industry support and leadership High-profile sponsorship Challenge to all to launch a coalition ask for DOE support 	 Initial seed \$ from DOE Advocate for demo and authorize \$, tax status. Estimated cost: \$2.5-3 million Grass roots funding 	 Identify coalition members Bring all groups together Figure out broad message and common policy agenda Fund organization Congressional caucus 	• Immediately
Develop public relations plan	 Similar to EnergyStar[®] Hydrogen "on the map" Hydrogen campaign Exhibits Briefing packets Public spokespersons Hydrogen "in your life" 	• Everyone	 Coordinated effort DOE NHA New coalition Fortune 100 Hydrogen success stories Hydrogen associations 	 New coalition DOE and EPA Foundations States Grass rots organization (PIRG) Industry support 	 Organize! Coalition needs to develop PR plan NHA can begin process Focus on NEP agenda— hydrogen outreach Find 3 messages Reach out to NASEO,NGA, etc. 	• Immediately
Create consumer demand interest through all media	 Product placement in films Community models Incentives for consumer action 	• Everyone	 Coordinated effort DOE NHA New coalition Fortune 100 Hydrogen success stories Hydrogen associations 	 New coalition DOE and EPA Foundations States Grass roots organization (PIRG) Industry support 	• Create awareness through PR	• Immediately

Hydrogen Education and Outreach ACTION PLANS

TOP VOTE GETTING ACTIONS	BRIEF DESCRIPTION OF THE ACTION	TARGET AUDIENCE(S)	PRIMARY PERFORMING ENTITIES	PRIMARY FUNDING ENTITIES	NEXT STEPS	TIMEFRAME
Create a public demonstration hydrogen village (10 years out)	 Launch phased model community project Fund creation of "micro-economy village" for public education Demos HO tech development 	 Working models Around country General public: 1) HO, 2) Technology development Customers NAHB A/E's Implementers HO Tech development 	 HUD Home builders and contractors Fannie Mae NAHB National Association of Realtors 	 HUD DOE EPA Industry DOT Foundations Habitat for Humanity 	 DOE Lead Hawaii project-base Subcommittee of coalition DOE solicitation-Buildings of the Future Support basic R&D Support for R&D activities Then, educate and outreach Raise awareness— temper expectations 	• Near- to mid-term (in about 10 years)
Commit long- term resources to K-12 → graduate level education	 Target curriculum— all levels Educate teachers Hold summer teacher workshops Inventory existing resources 	 Entire education community K-12 students Teacher: NSTA, Dept. of Education State and local reg. School districts Publishing companies 	 Coalition School board associations Teachers' associations Publishers 	 Legislatures Foundations Private sector support DOE NSF 	 Inventory resources Peer review existing resources Set up teacher training Try to integrate into existing curriculums 	• Immediately

Hydrogen Education and Outreach ACTION PLANS (CONTINUED)

SECTION 8

HYDROGEN SYSTEMS INTEGRATION BREAKOUT SESSION

- Key messages from breakout sessions: What are the key barriers and needs you identified from the production, delivery, storage, energy conversion, applications, and education and outreach breakout sessions?
- Systems integration issues: What are the crosscutting, missing, and conflicting pieces of information from the breakout sessions that need to be considered by the systems integration group?

Participants:			
NAME	ORGANIZATION		
Dave Nahmias	HTAP		
Bill Smith	Proton Energy Systems		
Francis Lau	Gas Technology Institute		
Lauren Segal	BP		
Chung Liu	South Coast AQMD		
Shannon Baxter	California ARB		
Matthew Fairlie	Stuart Energy		
Douglas Wheeler	UTC Fuel Cells		
Seth Dunn	World Watch Institute		
Steve Tang	Millennium Cell		
Bob Miller	Air Products and Chemicals, Inc.		
Revis James	Electric Power Research Institution		
Joan Ogden	Princeton University		
Catherine Gregoire-Padro	National Renewable Energy Laboratory		
Richard Bradshaw	Dykema Gossett, PLLC		
Brendan Dooher	National Academy of Engineering		

FACILITATOR: Tara Nielson, Energetics, Inc.

	BARRIERS	NEEDS
PRODUCTION	 Policy—dealing with (accounting for) fossil fuel externalities Funding Codes and standards Crosscutting R&D on: Catalysts Materials Manufacturability Mass production Technology—carbon sequestration How? How much? "Carbon free energy sources" – Linking renewables / nuclear power and public opinion 	 Demonstrations, demonstrations Policy – have a vision, need a mission – near-term goals! Market pull Product definition—what are the hydrogen solutions? What people think of / know about hydrogen
DELIVERY	 Lack of consensus on total costs – both for hydrogen and alternatives Codes and standards Technical maturity of refueling stations Lack of safety criteria (connects to public expectations) Chicken or egg—what will be the initial key driving application? Ability to match investment to market Imbalances between hydrogen supply and demand Cost of hydrogen technologies Externality costing Customer expectations for refueling Lack of major technology advances 	 Demonstrations: initial government funding and government- industry partnerships Codes and standards development, harmonization Public outreach, education, access to existing information Policy, financial incentives Analyses on lifecycle cost, transition strategies

KEY MESSAGES FROM BREAKOUT SESSIONS

	BARRIERS	NEEDS
STORAGE	 Insufficient funding Lack of codes and standards Energy density too low Lack of education Customer acceptance at risk Lack of major technology advances 	 Breakthrough solutions to energy density issues "Agony neutral" solutions Education on storage safety Materials RD&D Pressurized storage Metal hydrides Chemicals (hydrides, carbon, allenenes) Technology RD&D Manufacturing Systems integration Major increase in funding for R&D Raise visibility, expedite, and align interagency activities on codes and standards
CONVERSION	 Lack of coordinated technology development Oil and gas are too cheap Lack of a clear, consistent, long-term policy. High degree of uncertainty makes financial markets unwilling to invest 	 Clear, realistic understanding of achievable near-term product value propositions Fuel cell research in materials, interface New IC engines R&D on electrochemistry, low NOx, efficiency Expansion and continuation of demonstration projects Successful incentive mechanism (e.g. California ZEV mandate, wind production)
APPLICATIONS	 No premium for clean technologies. Hydrogen as a fuel does not give financial benefit to user. Limited incentive for "early adopters" of applications Cost of hydrogen is high compared to natural gas (where hydrogen cost is low, power cost is low) Lack of "level playing field" for distributed generation technologies (efficiency, environmental, relative benefits are not fully captured in the market) Too much reliance on fuel cells while ignoring current technologies Reliability Lack of long-term leadership Chicken and egg issues 	 Materials science and basic research Demonstrations Bipartisan outreach National outreach Local outreach Government as an "early adopter" (procurement, infrastructure support, demonstrations) Price parity Tax credits for oil but no tax credits for hydrogen Distributed generation policy supports (interconnection standards, codes, etc.) Optimization in current hydrogen product technologies Stranded industries "buggy whip" Uniform tests and evaluation standards Uniform codes and standards

	BARRIERS	NEEDS		
EDUCATION	Inconsistent regulations, codes and standards, permitting processes	Need a religion for hydrogen culture—long term and personalized		
	• Not enough demonstrations (and funding) to educate the public			
	Lack of trained educators			
	Too many technologies—dilutes short-term efforts			
	• Fear of hydrogen safety			
	Lack of consensus regarding green house gas impact on environment			
	• Lack of consumer pull			
	o Sexiness			
	• Cost externalities			
	0 Knowledge			

CROSS-CUTTING			MISSING	CONFLICTS
 Policy on external costs of energy (environmental, energy security) Basic R&D Coordination across multiple organizations – gaps and overlaps Use R&D resources wisely – so as not to dilute Materials Catalysts Manufacturability Testing Certification Technology storage Durability and reliability Timing of subsystem development uneven Consumer confidence Technology Dread Acceptance "Why hydrogen?" drivers develop method to both integrate this work with previous work and parallel programs Development of transition strategies Realigning existing program concentration to match the vision and roadmap Regulatory consistency – over time and among agencies Technology uncertainties v. sub- technology system alignment Applications drive attributes or targets for hydrogen supply chains and infrastructure 	 Integrated hydrogen system demonstration funded by government Global perspective and international markets (benchmark with other government strategies, e.g., EU, Japan, Iceland) Leadership Setting goals Policy – societal values Market – products Investment to upgrade / advance existing technologies, and to launch new technologies More cooperative efforts (e.g., PNGV) Universities (NSF grants) National Labs (Fed) Industry partnerships Systems analysis work Valuation of hydrogen benefits Energy security Environmental What is it worth to consumers, government, society Build on "lessons learned" from other industry roadmaps: nuclear power, biotechnology Limited recognition of mutually reinforcing nature of hydrogen ICE and hydrogen fuel cell technologies Time frames for roadmap process (2010, 2020, 2030) not appropriate—desire for better near-term definition 	 Chicken or egg Demonstrations (technology and education) best way to educate and reduce anxiety (LA hydrogen ICE project) Demonstrate integrated systems – not only technology, also value propositions Codes and standards Cross-cut everything Critically important Single permitting process Coordinated level Stationary interconnect Mobile storage/handling Safety/value Public outreach Price/financial drivers absent Systems approach – need to Advancement of storage technology for production, transport, and mobile, stationary, and portable applications \$7,000,000,000 in 30 years (Greene, ORNL) Breakthrough technologies and thinking needed Timing – need a short term technology to bridge to longer term (e.g., ICE—fuel cells, DG—pipeline) Balancing and optimizing supply and demand Hydrogen is a problem and an opportunity Government as an early adopter (behaving as a consumer) 	 Need to define value in terms of dollars, environment, electricity system, economic productivity Need to define focus of first application in terms of where greatest value delivered Life cycle / full system benefit-cost analysis: need more, need to reconcile 	 Optimizing production, delivery, storage technologies separately may sub-optimize system or lead to false conclusions Role of and proper balance of leadership from government, industry Does industry focus on a few technologies – prioritize R&D?

INTEGRATION ISSUES

SUMMARY OF KEY CROSSCUTTING ISSUES

Codes and standards Putting and keeping passion behind the vision Systems analysis Safety Chicken and egg-matching supply and demand R&D component Development of integration and optimization of systems Demonstration projects that are integrated Industry-government demonstration projects and outreach Government leadership of demonstration projects Customer acceptance Policy reflecting external costs and energy security

SECTION 9 CLOSING PLENARY SESSION

Breakout Session Reports

Production

Gene Nemanich, Chevron Texaco Technology Ventures The top needs identified in the hydrogen production breakout group include:

- Capture and sequester of carbon dioxide in the production process that makes hydrogen and electricity
- Separation of purified hydrogen on a small and large scale
- Cheap small scale reformers
- Codes and standards
- Better large scale gas fires that can use various feedstocks
- Better electrolyzers
- Demonstrations of new technologies, with public and private entities working together because of the risk and expense (e.g., nuclear via Thermochemical)
- Advances in technology (e.g., biological, photolytic, and high temperature separation)
- Funding for programs (e.g., incentives, rewards and penalties relating to long term goals)

Comment from the audience: Clarification regarding the costs of using nuclear power to produce hydrogen – costs should not be misrepresented, as the technology already exists and future efforts can build on this.

Delivery

Art Katsaros, Air Products and Chemicals, Inc.

The methods for delivering hydrogen already exist, however, these methods need to be more cost-effective and better developed. Delivery needs include:

- Codes and standards, and compatibility requirements
- Comprehensive demonstration programs, as there are a lot of new technologies that will be developed
- Solid understanding of various options, especially regarding carbon
- Improved financial incentives (e.g., tax credits)
- Better understanding of the transition to a hydrogen economy
- Current infrastructure—how much is convertible for dual-use or how much will be built out for a new hydrogen system?
- Better understanding of delivery system options
- Getting better access to existing information

<u>Storage</u>

Alan Niedzwiecki, Quantum Technologies

Hydrogen storage technologies are a critical component to the success of achieving a hydrogen economy. Storage crosses many boundaries and is part of the big pictures. There are early adopters of the technology, but they are not as developed as they need to be. The top needs identified in the hydrogen storage breakout group include:

- Allow new technologies to improve and move forward
- Codes and standards—champions, developers, and harmonizers
- Finding a way to get from research and development to mass commercialization—the education component is a big challenge
- Long term strategies for recycling storage devices

Proceedings for National Hydrogen Energy Roadmap Workshop

Energy Conversion

Mike Davis, Avista Labs

The energy conversion group found that roles will need to be addressed as everyone moves forward. There is tension between the private sector's need to move quickly, and the long-term transition for the nation – this caused debate. Regarding timeframes for the identified next steps, activities have to be accelerated in order to get products into the marketplace. The top needs identified in the energy conversion breakout session include:

- Codes and standards (e.g., product safety and performance standards, jurisdictional issues)
- Research and development for fuel cells and internal combustion engines—there needs to be a broad effort on materials, electrochemical, and interface R&D, which feeds into product development and demonstrations
- Cost reduction, reliability, productivity, durability
- Demonstrations the challenge is making them valuable. They need to involve customers, have evaluations and feedback, and have realistic expectations.
- Institution-building
- Existing work needs to be shared before moving forward and reinventing the future.

Applications

Frank Balog, Ford Motor Company

This breakout session focused on the components and systems requirements for mobile and stationary end-use applications for hydrogen. Most of the time was spent discussing mobile applications.

Key barriers the group identified include:

- Infrastructure (e.g., fuel, affordability, widespread use)
- Customer acceptance (e.g., need a reason to switch from current system)
- Lack of technology development strategies
- Leadership void (e.g., public policy)
- Technological shortfalls (e.g., onboard storage)

Key needs the group identified include:

- Hydrogen storage technologies
- Conversion (e.g., low cost fuel cell stack with improved reliability and durability)
- Technology-based codes and standards
- Government leadership (e.g., government as customer and infrastructure developer) with industry support
- Demonstrations
- Community-based clustered applications (e.g., hydrogen centers for mobile and stationary applications)
- Short-term end use technologies (fuel cells and combustion engines) to stimulate the infrastructure development
- Promotion of local demonstration pockets and their application on a national scale (e.g., California Fuel Cell Partnership)
- Increased sense of urgency
- Adequate funding, coordinated with the market and government
- Outreach and education

Public Education and Outreach

Jeff Serfass, National Hydrogen Association

For the purposes of this breakout session, the public included all audiences – 22 different audiences were identified, along with the messages and actions that need to be targeted to the various populations.

The top barriers identified in this breakout session include:

- Safety fears
- Lack of good examples to latch onto
- Lack of consensus in terms of environmental problems and hydrogen as a fuel
- Lack of training
- Lack of consumer pull
- Lack of monetization of environmental risks

Actions that the participants identified to address these barriers:

- Build a broad coalition to advocate energy policy—this would include participation at the state and local levels, and would involve advocacy on appropriations, regulations, continued paths of technology improvements, legislation, and incentives. There is a sign on sheet for volunteers.
- Organize public relations and education campaigns, which include briefings, identifying spokespersons, creating an Energy Star®-type program, identifying a convener for the various efforts, and having the Department of Energy seed the efforts
- Improve consumer awareness to create demand and facilitate understanding

- Initiate product placements in films
- Create a compelling message that stresses safety
- Brand hydrogen, with an environmental spin

• Create a long-term education plan that trains teachers at all educational levels Messages that were identified:

- Freedom Fuel
- Tie hydrogen to fast-moving train
- Hydrogen is clean and adds new options
- Hydrogen is everywhere—it's right in your back yard
- Hydrogen "economy" is not a great term for resonating with the public
- Safety needs messaging—cool, hip, use pop culture
- Hydrogen provides independence, is cost-effective, and is the environmental choice
- Hydrogen works it's big business today

Systems Integration

Joan Ogden, Princeton University

The top crosscutting themes identified during the systems integration breakout session include:

- Government leadership is needed to put the passion in the vision
- Policies are needed that reflect the external costs of energy and that are consistent with energy security
- Codes and standards development needs to continue
- Safety
- Consumer acceptance
- Research and development in technical areas needs to continue—industry will select out and put

- successful technologies into integrated systems. Looking at the system as a whole is important.
 Transition strategies need to be put into place, with consideration for the full costs to society—analysis needs to
- be used to think through all of this.There is a chicken and egg issue and supply and demand need to be matched
- There is a need for public-private partnerships to maximize demonstrations and what is learned from them
- This is a long-term vision, but we need to take steps now to achieve it

Audience Comments

Regarding integration, life cycle analysis across industry segments needs to be conducted—please consider this for the integration chapter.

What if the unthinkable happens – an oil crisis – please consider including a contingency plan for producing hydrogen.

It is important to keep in mind the importance of international markets – they are a big aspect. Perhaps the vision and roadmap could be applied globally.

Powerful integration could occur between stationary and mobile markets – an analysis is needed.

Enabling markets are needed – they can happen through government-industry partnerships.

Regarding leadership issues, the superconductivity effort can be an example of how to advance the hydrogen goal.

Regarding integration – leadership will come from industrial and entrepreneurial entities. Industry cannot look just to government for leadership. A "do-able" pathway needs to be established and then follow-through is needed. The roadmap should include what is "do-able" and then improvements should be made in those areas.

Next Steps

Rich Scheer, Energetics, Inc.

- Thanks to everyone for sharing his or her good ideas and for your hard work but we have just begun.
- After the workshop ends the notes and ideas will be documented and will be posted on the web for comment.
 These notes will be used to write the chapters for the roadmap document.
- I urge you to comment on the materials and provide your input.

Closing Remarks from Department of Energy Officials

Robert Dixon, Office of Energy Efficiency and Renewable Energy

- There seems to be a lot of enthusiasm here, I'm pleased that that is the case. Thanks to the industry leaders and Department of Energy colleagues for heading up this effort.
- It is one of my personal dreams to see the hydrogen technology portfolio flourish.
- During the presentations there were several references to leadership, and the Department of Energy leadership is here today. Please welcome David Garman, Assistant Secretary for Energy Efficiency and Renewable Energy.

David Garman, Assistant Secretary, Energy Efficiency and Renewable Energy

- One of my purposes here today is to thank Secretary Abraham. He challenged us to leap frog the technological status quo for environmental benefits. He has created a collegial Department of Energy and a team that is working together and with the private sector to develop new ideas.
- Government leadership needs to go hand in hand with public, Congressional, and boardroom plans. Leadership needs to take place inside and outside of government.
- Thanks also to Robert Card. Mr. Card has taught us that passion is important but not enough, and has asked us tough, uncomfortable questions as we make plans about the nation's energy future. He has reminded us of the link between taxpayer dollars and America's future.
- Thanks also to Kyle McSlarrow for his work behind the scenes in support of hydrogen energy development. He helped give hydrogen its role in transitioning markets and the nation's energy future. He made an impression on the President, and has since been nominated to be the Deputy Secretary of the Department of Energy. Please welcome Kyle McSlarrow.

Kyle McSlarrow, Chief of Staff for the Secretary of Energy

- I would like to compliment everyone here on work well done. This effort will take time, and will not end after these two days.
- Last year during the planning process for the National Energy Policy, there was a traditional debate over energy production versus conservation. We realize that this is not a zero sum game – America can do both with the entrepreneurial spirit and genius we have in this country. We have been asked to leap frog this old, tired, stale debate and start thinking outside the box.

62

- Hydrogen is just one focus in the National Energy Policy, but the Secretary has spoken about hydrogen more than any other subject mentioned in the Plan. The greatest opportunity and the biggest legacy he can leave would be to focus on incremental changes that will end up being large changes to society and our economy in the long-term future.
- I view this like a revolution—the scale of this effort is staggering, and everyone will need to be prepared before it can be fully launched. We have not seen change on this scale for several generations. I'll turn the microphone back over to Mr. Garman for closing remarks.

David Garman, Assistant Secretary, Energy Efficiency and Renewable Energy

- There are two paths we need to follow: research and development, and public outreach to capture the imagination of the American people. This will be a long journey and process, and the Department of Energy will work with you as we move forward.
- Thanks to all of you.

SECTION **10** LIST OF PARTICIPANTS

Andris Abele, Quantum Technologies Mark Ackiewicz, Technology and Management Services, Inc. Duane Adams, Minnesota Corn Growers Association Tim Armstrong, Oak Ridge National Laboratory Arvind Atreya, University of Michigan Rita Bajura, National Energy Technology Laboratory John Baker, JMC, Inc. Balu Balachandran, Argonne National Laboratory Frank Balog, Ford Motor Company John Barclay, CryoFuel Systems, Inc. David Bartine, NASA Kennedy Space Center Shannon Baxter, California Air Resources Board E.J. Belliveau, H2 Solutions, Inc. Maria Bellos, Fuel Cells 2000 Gottfried Besenbruch, General Atomics Ed Bless, H2 Solutions, Inc. Christopher Bordeaux, U.S. Department of Energy Richard Bradshaw, Dykema Gossett, PLLC Jeannette Brinch, Energetics, Inc. Ross Brindle, Energetics, Inc. David Bruderly, Clean Power Engineering Company Melvin Buckner, Westinghouse Savannah River Company Kenneth Cameron, General Motors Corporation Robert Card, U.S. Department of Energy Richard Carlin, Office of Naval Research Rodney Carlisle, History Associates, Inc. Tracy Carole, Energetics, Inc.

Lucito Cataquiz, U.S. Department of Energy John Celentano, Startech Envioronmental Corp. Steven Chalk, U.S. Department of Energy Dhanesh Chandra, University of Nevada, Reno Ron Chittim, American Petroleum Institute Wilson Chu, Johnson Matthey Fuel Cells Helena Chum, National Renewable Energy Laboratory William Clapper, SunLine Transit Agency Kipp Coddington, Covington and Burling Adam Cohn. IET Daniel Cohn, Massachusetts Institute of Technology William Craven, DaimlerChrysler Erin Cready, Sentech, Inc. Anthony Cugini, National Energy Technology Laboratory David DaCosta, Ergenics, Inc. James Daley, U.S. Department of Energy Ed Danieli, Praxair J. Michael Davis, Avista Labs, Inc. Robert Dempsey, ChevronTexaco Technology Venture Robert Dixon, U.S. Department of Energy Richard Doctor, Argonne National Laboratory Greg Dolan, Methanol Institute John Donohue, DCH Technology, Inc. Brendan Dooher, National Academy of Engineering Louise Dunlap, Dunlap & Browder, Inc. Seth Dunn, Worldwatch Institute Jack Eisenhauer, Energetics, Inc.

Kathi Epping, U.S. Department of Energy William Ernst, Plug Power Kellye Eversole, Eversole Associates Kay Fabian, Pacific Carbon International Matthew Fairlie, Stuart Energy Systems Stephen Fan, Ford Motor Company George Fenske, Argonne National Laboratory Patrick Findle, Gas Technology Institute Jason Francque, Deere & Company Alexander Fridman, University of Illinois Robert Friedland, Proton Energy Systems, Inc. Michael Gan, Hamilton Sundstrand Nancy Garland, U.S. Department of Energy David Garman, U.S. Department of Energy David Gelman, Antares Group, Inc. Brent Gerdes, Lincoln Composites Lauren Giles, Energetics, Inc. Gordon Gillerman, Underwriters Laboratories Marshall Gilmore, Florida Hydrogen Business Council Norma Glover, South Coast Air Quality Management District Thomas Grahame, U.S. Department of Energy Leo Grassilli, Office of Assistant Secretary of the Navy (I&E) Mark Grist, QuestAir Technologies, Inc. Sigmund Gronich, U.S. Department of Energy Thomas Gross, U.S. Department of Energy Andrew Haaland, ATK Thiokol Propulsion F. Henry Habicht, Global Environment & Technology Foundation Michael Hainsselin, Praxair Donald Hardesty, Sandia National Laboratories Art Hartstein, U.S. Department of Energy Robert Hawsey, Oak Ridge National Laboratory James Hempstead David Henderson, U.S. Department of Energy

Raphael Herz, Massachusetts Renewable Energy Trust Donna Ho, U.S. Department of Energy Susan Hock, National Renewable Energy Laboratory Peter Hoffmann, The Hydrogen and Fuel Cell Letter Katie Hoffner, Hydrogen Now! Peter Holran, Wexler & Walker Public Policy Associates Neville Holt. Electric Power Research Institute Jonathan Hurwitch, Sentech, Inc. Revis James, Electric Power Research Institute Arun Jhaveri, U.S. Department of Energy-Seattle Regional Office Alan Johnson, ZECA Corporation Peter Johnston, Pinnacle West Capital Corporation Arthur Katsaros, Air Products and Chemicals, Inc. Matthew Kauffman, U.S. Department of Energy Ferris Kawar, ATTIK Jay Keller, Sandia National Laboratories George Kervitsky, Sentech, Inc. Danny Keuter, Entergy Nuclear, Inc. Karen Kimball, U.S. Department of Energy George King, Houston Advanced Research Center Stacy Klein, Hart Downstream Energy Services Joseph Klimek, Startech Envioronmental Corporation Ben Knight, Honda R&D Americas, Inc. Kenneth Koyama, California Energy Commission Stephen Kukucha, Ballard Power Systems Ravi Kumar. GE Jay Laskin, Teledyne Energy Systems, Inc. Francis Lau, Gas Technology Institute David Lax, American Petroleum Institute Susan Leach, Hydrogen 2000, Inc. Michael Leister, Marathon Ashland Petroleum, L.L.C. Jaimie Levin, Alameda Contra Costa Transit William Lewis, ExxonMobil Refining & Supply Company

James Lide, History Associates, Inc. Tedd Lima, Hamilton Sundstrand Chung Liu, South Coast Air Quality Management District Wison Luangdilok, Fauske and Associates, Inc. Margaret Mann, National Renewable Energy Laboratory Faruq Marikar Shiro Matsuo, Honda R&D Americas, Inc. Robert Mauro, U.S. TAG ISO TC 197 Jamie McDonald, Energetics, Inc. Gary McDow, Air Liquide America Katherine McHale, Millennium Cell Kyle McSlarrow, U.S. Department of Energy Stephen Melancon, Entergy Nuclear, Inc. Christine Messina-Boyer, Millennium Cell C. Lowell Miller, U.S. Department of Energy James Miller, Argonne National Laboratory Jennifer Miller, Energetics, Inc. Karen Miller, National Hydrogen Association Robert Miller, Air Products and Chemicals, Inc. JoAnn Milliken, U.S. Department of Energy Marianne Mintz, Argonne National Laboratory David Nahmias, Hydrogen Technical Advisory Panel Gene Nemanich, ChevronTexaco Edson Ng, QuestAir Technologies, Inc. Michael Nicklas, Innovative Design, Inc. Alan Niedzwiecki, Quantum Technologies Tara Nielson, Energetics, Inc. Zdenek Nikodem, U.S. Department of Energy Richard Noceti, U.S. Department of Energy/NETL Joan Ogden, Princeton University Jim Ohi, National Renewable Energy Laboratory Robert Olson, Institute for Alternative Fuels Manuel Pacheco, PDVSA-Citgo

Catherine Gregoire Padro, National Renewable Energy Laboratory Terry Penney, National Renewable Energy Laboratory Adam Pivovar, National Institute of Standards and Technology (NIST) Venki Raman, Air Products and Chemicals, Inc. Richard Rashilla, Lincoln Composites James Ritter, University of South Carolina Jerry Rogers, General Motors R&D Peter Rohde, Inside Washington Publishers Michael Romanco, Gas Technology Institute Samuel Rosenbloom, U.S. Department of Energy Neil Rossmeissl, U.S. Department of Energy Kenichi Sakamachi, JMC, Inc. Jodi Salup, Wexler & Walker Public Policy Associates Krishna Sapru, ECD, Inc. **Richard Sassoon, SAIC** Vesna Scepanovic, Natural Resources Canada Jennifer Schafer, Plug Power, Inc. Randolph Schaffer, Structural Composites Industries Rich Scheer, Energetics, Inc. Edward Schmetz, U.S. Department of Energy Gregory Schuckman, University of Central Florida Ken Schultz, General Atomics Paul Scott, Stuart Energy USA Andrew Searcy, Southern Hydrogen Fuel Cell Research Partnership Prentiss Searles, American Petroleum Institute Lauren Segal, BP Rajat Sen, Sentech, Inc. Jeffrey Serfass, National Hydrogen Association Martin Shimko, Gas Equipment Engineering Company Surindar Singh, Alberta Energy Research Institute Edward Skolnik, Energetics, Inc. Brad Smith, Shell Hydrogen

Charles Smith, Energetics, Inc. Daniel Smith, G.E. Corporate Research & Development William Smith, Proton Energy Systems, Inc. Jeffrey Staser, Denali Commission Glenn Strait, World & I Magazine Kenneth Stroh, Los Alamos National Laboratory Andrew Stuart, Stuart Energy Systems William Summers, Savannah River Technology Center F. Dexter Sutterfield, National Energy Technology Laboratory/NPTO Chris Sutton, Air Products and Chemicals, Inc. Satish Tamhankar, The BOC Group Stephen Tang, Millennium Cell Christina TerMaath, Energetics, Inc. C.E. Thomas, H2Gen Innovations, Inc. George Thomas, Sandia National Laboratories Robb Thompson, Dynetek Industries Ltd. Dale Tiller, Lincoln Composites David Tsay, Ztek Corporation John Turner, National Renewable Energy Laboratory

Richard Uchrin, Activated Metals Technologies Terrence Udovic, National Institute of Standards and Technology Charles Veley, U.S. Hydrogen Greg Vesey, ChevronTexaco Technology Venture Robert Walker, Wexler & Walker Public Policy Associates Patricia Watson, DuPont Company Suzanne Watson, Northeast Midwest Institute Kyle Wetzel, K. Wetzel & Company, Inc. Doug Wheeler, UTC Fuel Cells Gene Whitney, Office of Science and Technology Policy Frank Wilkins, U.S. Department of Energy James Williams, American Petroleum Institute Kathleen Winn, K. Winn & Associates, Inc. Bruce Wood, Deere & Company Adriene Wright, E2I John Wysor, U.S. Environmental Protection Agency Rosa Young, Chevron Texaco Ovonic Hydrogen Systems, L.L.C. Stephen Zimmer, DaimlerChrysler Corporation Mary Rose de Valladares, DCH Technology, Inc.