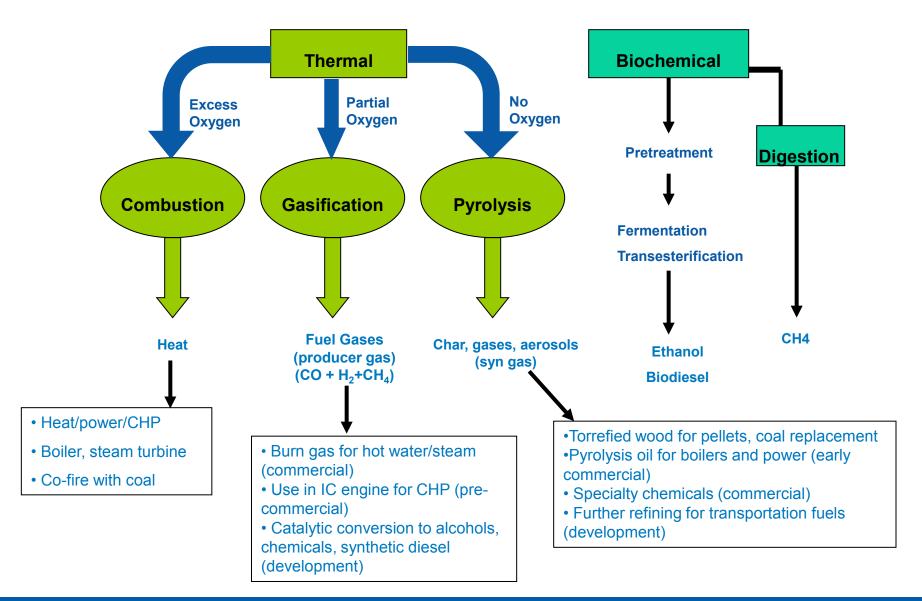
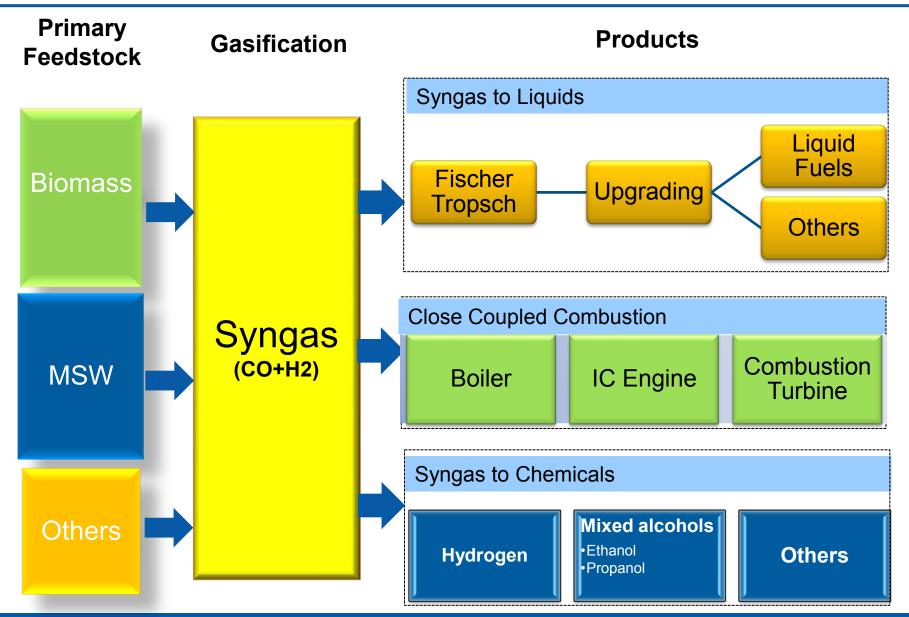


Waste-to-Energy Technologies and Project Development

DOE-DOD WTE Workshop

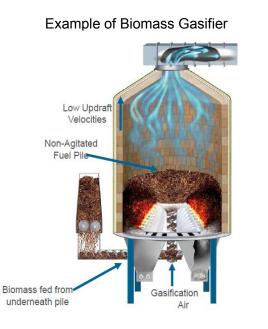

Jerry Davis July 13, 2011

NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC


Overview

- Gasification Technology Overview
- Technology Profile for Gasification WTE applications
- Driving Factors for WTE
- Project Development Considerations

Energy Pathways



Gasification Flexibility

Gasification Overview

Exothermic/Combustion Reaction	Endothermic/Gasification Reactions	
C + O ₂ -> CO ₂	$C + H_2O \Leftrightarrow CO + H_2$	$C + CO_2 \Leftrightarrow 2CO$
	$C + 2H_2 \Leftrightarrow CH_4$	$CO + H_2O \Leftrightarrow CO_2 + H_2$

	Gasincation E	missions Profile		biogy	Princeton
Item Tested	Location	Test Result	Unit	EPA Standard	vs EPA
Particulate	Stack	00.0014	gr/dscf	0.0015	10% lower
со	Stack	32.2	ppmv	100	60% lower
нс	Stack	Not detectable	ppmv	10	99% lower
NOx	Stack	66.81	ppmv	150	60% lower
SO2	Stack	15.88	ppmv	30	50% lower
HCI	Stack	12.068	ppmv	25	50% lower
CI2 + HCI		9.068	ppmv	21	60% lower
Hg/	Stack	0.0081	ug/m ³	8.1	99% lower
Dioxin /Furan	Stack	0.098	ngTEQ/dscm	0.11	10% lower
Opacity	Stack	10%		10%	Same

Configuration Emissions Drafiles Kings: Technology

Source: Princeton Environmental

- About 25 units operable in the U.S. using waste material feedstocks, including biomass

- Primary challenge for WTE application is inconsistency of MSW as feedstock

Snapshot of Gasification WTE Systems*

Company	Contact	Technology	Notes
AlternNRG-Westinghouse Plasma Corp.	Mark A. Wright 770-696-7698 wrightm@westinghouse-plasma.com	Plasma arc gasification	o Biomass facilty operating in Pennsylvania o WTE facilities operating in Japan and India
Biomass Energy Systems, Inc. (BESI)	Tony Calenda 100 Overlook Center 2nd Floor Princeton, NJ 08540 321-795-3107 tony.calenda@biomassenergysystems.net	Rotary kiln gasification	o Operating a 100 TPD unit in South Korea, fueled by industrial waste (mainly fabric, wood, plastic, packaging materials)
International Environmental Solutions (IES)	Karen Bertram 714.372.2272 karenbertram@wastetopower.com	Horizontal auger-fed gasification	o Operating 30 TPD unit in Mecca, CA o Finalist for LA County WTE projects
Organic Energy Gasification	Mr. Jan d'Ailly 32 Academy Crescent Waterloo, Ontario, N2L 5H7 519-884-9170 jadilly@organicenergy.ca	Low temperature gasification	o WTE facilities operating in Ontario, Canada since 2001 o 25 TPD and 50 TPD modules o 94.9% conversion claim
Plasma Power LLC	James Juranitch 730 W. McNabb Rd Ft Lauderdale, FL 33309 262-443-9100 Jjuranitch@plasmapowerllc.com	Plasma arc gasification	o 250 TPD WTE facility planned for operation in Marion, Iowa o 20 TPD WTE facility planned for operation in Ft Lauderdale, Florida o WTE facilities operating in Europe and Asia
Princeton Environmental	Peter Tien 14-58 154th St Whitestone, NY 11357 718-767-7271 peter.tien@princetonenvironmental.com	Gasification	o 30-60 TPD WTE facilities operating in Japan o 30 years of experience in this field
Pyrogenesis	Philippe Chevalier 1744 William St, Ste 200 Montreal, Quebec H3J 1R4 514-937-0002 pchevalier@pyrogenesis.com	Plasma arc gasification	o 10.5 TPD unit operating at Hurlburt Air Field, Florida
Recyling Solutions Technology	Steve Jones 31 East 12th St Cincinnati, OH 45202 513-241-2228 steve@jaap-orr.com	Rotary kiln gasification	o 300 TPD unit operating in Inez, KY
Rockwell - Intellergy	Richard Noling 1400 Hall Ave. Richmond, CA 94804 510-837-6200 Rick Noling@gmail.com	Rotary gasifier, steam reformer	o No WTE facility in operation o Claim of 60% Hydrogen content in syngas o 30 TPD and 75 TPD size units

* Respondents to recent request for industry information, not all-inclusive

- Gasification Technology Overview
- Technology Profile for Gasification WTE applications
- Driving Factors for WTE
- Project Development Considerations

Small-scale Gasification WTE Profile

- 10 100 tons per day (tpd) advanced conversion technologies in demonstration phase
 - ➢ Good fit for the typical volume of solid waste at a DoD installation
 - ➢ 600 800 kWh per ton MSW
 - Synthetic gas (CO + H₂ + CH₄) can be used in IC engines, gas turbines, steam turbines or to make liquid fuels
 - Potential for reduced water usage
 - Installed Cost \$6,000+ per kW
 - Residual material about 10% by volume,
 20% by weight
 - ➤ LCOE = \$0.15 \$0.20+ per kWh

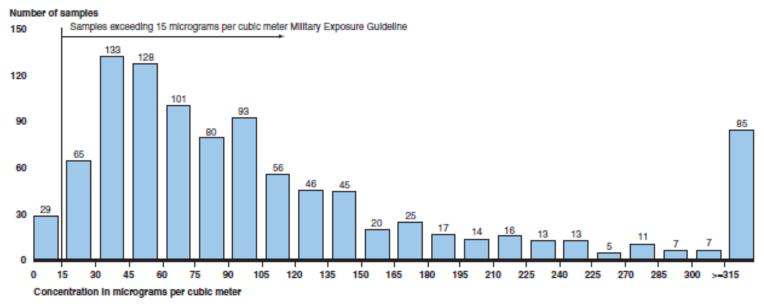
(LCOE depends on tipping fee revenue)

IES 30 tpd unit Mecca, CA

Driving Factors: DoD Installations

- Cost
 - National average solid waste disposal cost is \$44 per ton
 - Lifecycle costs for DoD landfills can exceed \$150 per ton
- Space
 - 71 active landfills on DoD installations; these are quickly reaching capacity
 - 400 closed landfills occupy over 5000 acres; with continued advancement, WTE may help recover this land
 - Currently not considered diversion per DoD's Integrated Solid Waste Management plan (a challenge for net zero waste goals)
- Energy
 - WTE contributes to renewable energy generation and greenhouse gas reduction executive orders and goals

"Micro-scale" WTE Profile


- Expeditionary scale (.5 3 tpd) WTE entering limited demonstration phase
 - Demonstration projects at Ft Irwin and Edwards AFB
 - Forward operating base (FOB) assumptions
 - Estimated loads of .32 KW .8 KW per person
 - 3 18 lb of waste generated per person per day
 - 250 600 kWh per ton MSW
 - WTE may provide 7 38% of the power requirement

Community Power Corp: MEWEPS System

Driving Factors: Operational Energy

- Fully Burdened Cost of Waste Disposal
 - ⋟ \$500 per ton
- Government Accountability Office (GAO) Report
 - > 251 burn pits in Afghanistan, 21 in Iraq as of Aug. 2010
 - Poor air quality: Over 90% of air samples exceeded Military Exposure Guidelines for particulate matter (see graph below)
 - Lawsuits filed in 43 states against Government waste management contractors

Source: GAO analysis of DOEHRS ambient air sampling data

- Gasification Technology Overview
- Technology Profile for Gasification WTE applications
- Driving Factors for WTE
- Project Development Considerations

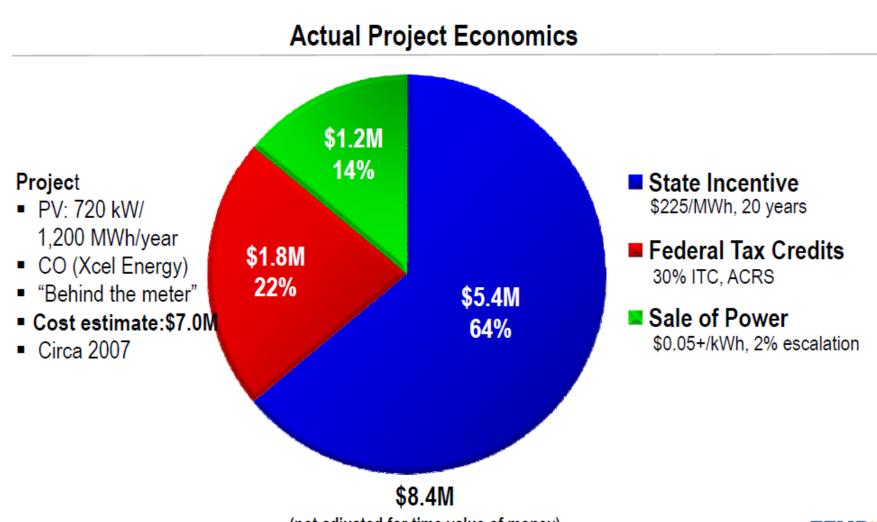
WTE Factors to Consider

- Economics
 - Electricity rate (>\$.12/kWh favorable)
 - Tipping fees (>\$70/ton favorable)
- Site selection
 - Grid interconnection
 - Environmental screening (NEPA process)
 - Mission compatibility
- Resource
 - Waste stream
 - Large-scale, commercially proven, systems require >300 tpd (partnership with local municipality)
 - Small-scale, yet-to-be proven systems can operate at smaller scales
- Off-take
 - Electricity or heat sales to site (3rd party PPA? Expected Rates?)
 - Export of electricity via PPA with utility

RE Project Financing Factors

In general, Federal RE projects are economically viable when three revenue sources can be leveraged.

- Federal tax credits (investment tax credit (ITC) or production tax credit (PTC))*
- Sale/purchase of power produced
- State incentives ("make or break" project revenue source)


Bottom line: RE project economics are in general "razor thin" (incremental "project costs" are potential show stoppers).

* Ownership by private sector required (e.g. developers including investor owned utilities)

720 KW PV Project at NREL

PV PPA Economics Example: NREL

(not adjusted for time value of money)

Implementation Mechanisms (What's working)

Power Purchase Agreements (PPA)

- Multiple projects across the agencies
- Project examples (Nellis AFB (14MW), USCG-Petaluma (855 kW), Ft. Carson (2MW), NREL (4MW), etc.

Energy Savings Performance Contracting (ESPC)

- Up to 25 year term authorized
- Tax credit issue (agency retains project ownership)-Energy Services Agreement (ESA) embedded in ESPC
- "Bundled solutions" (Hill AFB (210 kW))
- Projects examples (biomass combustion)
 - NREL Renewable Fuel Heating Plant (6-8mmBtu/hr hot water boilerdisplaces natural gas use)
 - ✓ Savannah River Site biomass CHP (240,000 pph, 20 MW)
 - Oak Ridge National Laboratory biomass gasification
- Hill AFB Landfill Gas to Energy Electrical Generation (2,250 kW)

Utility Energy Service Contracts

- Project examples
 - ✓ Marine Corps Barstow/SCE-1.5 MW wind turbine
 - ✓ Camp Pendleton/SDG&E-75 KW PV system

Nellis Air Force Base, Nevada

NREL Renewable Fuel Heating Plant

Implementation Mechanisms

(What's working) - continued

Enhanced Use Lease (EUL)

- Real estate transaction ("under utilized land" requirement; <50 year term)
 - Current agency authorities (DoD:10 USC 2667, NASA)
- Benefit: "fair market value" plus "in kind" value (competitive determination)
- Project example (NASA Kennedy Space Center (10 MW PV FP&L, 990 kW in kind PV system))
- Proposed projects (Air Force Real Property Agency (AFRPA) actively promoting (proposed Edwards AFB project), Army COE (proposed Ft. Irwin project)
- DOE Brookhaven National Laboratory (37 MW, 0.5-1.0MW in kind PV system ("one off" LIPA lease arrangement)

"Energy Joint Venture"

- Contracting authority for energy related procurements (10 USC 2922a (DoD), <30 year term)
- Benefit: Agency takes project development risks/costs in exchange for financial benefits commensurate with project value
- Project example: Navy China Lake (Coso Geothermal-270 MW, site power and significant sale of energy to SCE [some \$17M annually])

Coso Geothermal Development (NAWS China Lake)

Contact Info

Jerry Davis Biomass Heat and Power Deployment & Market Transformation National Renewable Energy Laboratory 1617 Cole Blvd, MS-302 Golden, CO 80401 303-275-3199 Jerry.Davis@nrel.gov